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A Generalizations of the Model
(For Online Publication)

A. GENERALIZING CONTRACTS

The model in Section 1 assumes that employers offer a wage to workers, as opposed to
offering a general contract that specifies both a wage and labor supply. Here, I show that
this is not restrictive. The reason is that workers with different types or productivity levels
do not differ in their disutility of labor supply, fixing their wage.

To demonstrate this formally, I adopt all the assumptions of the baseline model except
that I allow each employer to offer a contract Cj = {zj , lj} ∈ R+×R+ = C to the worker.1

Each contract specifies a salary zj ∈ R+ and a quantity of labor lj ∈ R+, which jointly
imply a price per unit (wage) wj = zj/lj . As before, the worker accepts her preferred
offer, supplies labor and consumes c = z − T (z).

The worker’s strategy is now a set of two functions – an investment decision and an
acceptance rule – which can be written as: x : K× T → R+; and A : K× T ×Θ×C|J | →
J . Each employer’s strategy is a function that maps signals and tax systems to contract
offers Oj : Θ× T → C. Despite the increased complexity, it remains true that every firm
earns zero expected profit. Moreover, contracts can always be equivalently characterized
as an offer of a wage wj = w (θ|π) equal to the worker’s expected marginal product given
the signal θ, with the worker freely choosing how much labor to supply. In this sense,
nothing substantive is changed from the baseline model.

Lemma 3. Fix a realized value of θ and assume that E [q|θ, π] is strictly positive and finite
given equilibrium beliefs π (q). In any pure-strategy equilibrium: all firms j ∈ J earn
zero expected profit; the wage wj = zj/lj implied by every contract offered to the worker
is equal to her expected marginal product E [q|θ, π]; and the worker’s labor supply lj

satisfies lj ∈ L∗j = argmaxl̃j∈R+
u
(
wj l̃j − T

(
wj l̃j

)
, l̃j
)
.

B. WORKER SCREENING

If workers of different types do differ in their disutility of labor supply conditional on
their hourly wage, screening by employers using menus of contracts may be possible. To
see why, suppose workers’ utility functions take the following quasilinear form:

Uk(c, l,x) = c− hq (l)− kx (28)

where q = Q (x).

1Employers could also offer menus of contracts, but this has no benefit because workers of different
productivity levels have no reason to select different contracts.

2



The assumptions required for screening are documented by Spence (1978), and studied
in the context of taxation by Stantcheva (2014). Here, it suffices to study a special case in
which taxation is linear and workers have two different equilibrium productivity levels,
qi = {q1, q2}with q1 < q2. However, the analysis can be generalized to non-linear taxation
and many productivity levels (see Stantcheva 2014). Given a signal, θ, that the employer
has observed, let the likelihood that an individual has productivity q1 be λ1, and the like-
lihood that they have productivity q2 be λ2 = 1 − λ1. Given these productivity levels,
screening requires the following assumptions.

Assumption 4. (i) Labor supply costs are increasing and convex: h′qi (l) > 0, h′′qi (l) > 0 ∀i.

(ii) Total and marginal disutility of effort are zero with zero labor: hqi (l) = h′qi (l) = 0 ∀i.

(iii) The higher type experiences lower total disutility: hq2 (l) < hq1 (l) ∀l > 0.

(iv) The higher type experiences lower marginal disutility: h′q2 (l) < h′q1 (l) ∀l > 0.

The reason screening is possible with these assumptions is that higher-productivity work-
ers are willing to work longer hours given the same wage. It is plausible that these assump-
tions hold in some contexts, although it is unclear whether they hold in general.2

There are many models of screening. I focus on the Miyazaki-Wilson-Spence (MWS)
equilibrium concept (Miyazaki 1977, Wilson 1977, Spence 1978). However, there are other
screening models that would be reasonable, and the choice of which one is appropri-
ate is sensitive to assumptions about the timing and nature of contract choices. Specifi-
cally, one of the types of MWS equilibria below involves cross-subsidization, and firms
would always want to withdraw the loss-making contract if there were a second stage.
Nonetheless, MWS is commonly used and has been justified in several different ways (see
Fernandez and Rasmusen 1993, Netzer and Scheuer 2014, Mimra and Wambach 2019).

In the MWS framework, firms can offer an arbitrary menu of contracts, each specifying
a salary zj ∈ R+ and a quantity of labor lj ∈ R+. Firms break even on their overall
menu of contracts, and choose their menus recognizing that other firms may withdraw
any contracts that are unprofitable.

Definition 2. An equilibrium is a set of contracts such that firms break even across their entire
menu of contracts, and there is no omitted contract that would be profitable after all contracts made
unprofitable by its introduction have been withdrawn.

2Indirect support for these assumptions comes from instances in which firms use this type of screening.
For example, Landers, Rebitzer and Taylor (1996) study law firms that seem to screen associates by requiring
them to work long hours before being promoted.
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Formally, the firm solves the following problem.

max
z1,z2,l1,l2

(1− τ ) z2 − hq2 (l2) (29)

subject to:

(1− τ ) z1 − hq1 (l1) ≥ (1− τ ) z2 − hq1 (l2) (IC12)

(1− τ ) z2 − hq2 (l2) ≥ (1− τ ) z1 − hq2 (l1) (IC21)

λ1z1 + λ2z2 = λ1q1l1 + λ2q2l2 (ZP)

(1− τ ) z1 − hq1 (l1) ≥ (1− τ ) zRS1 − hq1

(
lRS1

)
(RS)

The first two constraints guarantee incentive compatibility: they require that individuals
of each productivity level prefer the contract designed for them. The third constraint
is a zero profit condition, pooled across both types. The fourth requires that the lower-
productivity worker gets at least as much utility as in the “Rothschild-Stiglitz” separating
allocation (Rothschild and Stiglitz 1976); this precludes possible profitable deviations by
firms that would otherwise arise (see Miyazaki 1977).

For simplicity, I assume labor supply is isoelastic, which ensures that there is an ad-
verse selection problem for all τ if there is an adverse selection problem for τ = 0. The
solution is provided by Stantcheva (2014), which is adapted and restated here.

Proposition 5. For any tax rate τ , the profit constraint (ZP) is binding and the second IC con-
straint (IC21) is slack. With isolelastic labor supply, the first IC constraint (IC12) binds. The low
type works an efficient amount of hours, h∗q1 (τ ). There are two possible configurations.

(i) If the share of low-productivity types is high, λ1 > λ̃1 (t): the RS constraint binds, each
worker earns her marginal product, and there is full separation. The higher-productivity
type works more than the efficient level, with her labor supply characterized by:

q1l
∗
q1 (τ ) (1− τ ) = q2lq2 (τ ) (1− τ )−

(
hq1 (lq2 (τ ))− hq1

(
l∗q1 (τ )

))
.

(ii) If the share of low-productivity types is low, λ1 ≤ λ̃1 (t): the RS constraint does not
bind, and there is cross-subsidization from high to low productivity workers. The high-
productivity type works more than is efficient, with her labor supply characterized by:

h′q2 (lq2 (τ )) = (1− τ ) λ2q2 + λ1h
′
q1 (lq2 (τ )) .

In both of these cases, the utilities of workers with different productivity levels are
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compressed relative to an economy with symmetric information. In case (i), the hourly
compensation of each worker is equal to her marginal product. However, the higher type’s
utility is lowered because her labor supply is distorted away from her optimum to ensure
that low productivity workers do not want to pretend to have high productivity. In case
(ii), this remains the case, but high-productivity workers cross-subsidize the wage of low-
productivity workers as well.

From the point of view of the human capital investments that are the focus of this pa-
per, this compression of workers’ utility levels acts in the same way as the wage compres-
sion that occurs due to Bayesian belief formation when screening by firms is not possible.
The utility gain from increasing one’s productivity is lower than it would be if employers
could directly observe productivity, which undermines a worker’s incentive to acquire
human capital, and implies a spillover when workers invest.

C. REPEATED INTERACTIONS IN THE LABOR MARKET

An important simplification embedded in the model in Section 1 is that workers invest in
human capital once, and then interact with employers once in the labor market. In reality,
human capital investment and labor supply decisions are made repeatedly. As discussed
in Section 4, evidence suggests that employers gradually learn a worker’s productivity,
and that the return to a worker’s initial level of skill therefore increases over time. In this
appendix, I briefly discuss the implications of this.

Starting with the thought experiment in Section 4, let q be the worker’s human capital
and assume human capital investment occurs before entry into the labor market. (Gen-
eralizations follow below.) However, her marginal product, MPt(q) may depend on ex-
perience, t. In each period, let employers see a different signal θt ∈ Θt, which may be-
come arbitrarily precise over time. The worker is still paid her expected marginal product,
E(MPt(q)|θt, π), and her discount factor is δ.

If utility is quasilinear, taxation is linear and labor supply is perfectly inelastic, the
fraction of the social return to increasing q that the worker captures is:

s =
∑T
t=0 δ

t
∫

Θt
E(MPt(q)|θt, π)∂ft(θt|q)∂q dθt

∑T
t=0 δ

t ∂MPt(q)
∂q

(30)

where f (θt|q) is the conditional distribution of the period t signal.
The expression on the right of equation 30 is what I use in the calibration in Section 4.

It is the present-discounted private return to higher productivity divided by the present-
discounted social return. The expression takes into account the fact that employers grad-
ually learn a worker’s productivity, so that E(MPt(q)|θt, π) approaches MPt(q) and the
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worker is fully remunerated for her productivity later in life. Nonetheless, at earlier stages
in her career – which are more important due to discounting – the marginal private return
is lower than the social return. In addition, all my results take into account the fact that
workers’ tax rates, labor supplies and welfare weights change with their wage.

If human capital investments were spread out over the lifecycle, the model would
become more complex. The learning externality would then be present in every period for
the marginal investment, raising the question of how taxes should vary over the lifecycle.
On one hand, the fact that investment is still likely be concentrated at earlier ages suggests
that the externality would be more important – and taxes lower – at younger ages. But
on the other hand, the externality is exacerbated for later investments, all else equal. The
reason for this is that a worker’s marginal investment decision can be predicted based
on behavior in previous periods, which reduces the weight placed by employers on any
signals of contemporaneous investment. This mechanism is likely to push toward lower
taxes at older ages, to the extent that human capital investment remains important.

The model could be extended further still, to accommodate possibilities that arise in
a dynamic context. For example, with repeated interaction, employers might find a way
to provide incentives with dynamic contracts. There are many versions of this, which
generally involve workers effectively being remunerated in later periods for having had
higher productivity in earlier periods than was expected at the time (and vice versa). Such
dynamic incentives would need to be supported by commitment power or reputation-
building, and many such models involve workers agreeing to work for less than their
marginal product in earlier periods (possibly implying negative initial wages). This is
plausible in some settings, which makes this a rich but complex direction for future work.

D. UNEQUAL OR ASYMMETRIC LEARNING

The model discussed throughout this paper features symmetric information across em-
ployers. An alternative assumption would be that incumbent employers have more infor-
mation about a worker’s productivity than do other firms. Acemoglu and Pischke (1998)
is one example. They model learning more more simply than in this paper, focusing on
the asymmetry. Specifically, a worker’s first-period employer knows her productivity in
the second period, but outside employers do not.

The key result of Acemoglu and Pischke (1998) is that the incumbent employer has
ex-post monopsony power because of their informational advantage, and earns a profit.
Importantly, that profit is increasing in a worker’s skill. In turn, this produces the motiva-
tion for a firm to train its workers that is the focus of their paper. However, the flip-side is
that a worker’s wage increases by less than her skill despite the fact that her productivity
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is known with certainty by the incumbent firm in the second period. This means, in turn,
that there would be less incentive for the worker to invest in her own skill.

If the model here incorporated asymmetric learning, it would feature a similar effect.
Learning itself would mean that the relationship between expected productivity and skill
would be flatter than the relationship between true productivity and skill. That is why
there is under-investment in the present paper. Asymmetric learning would lead wages
to be further compressed even relative to expectations, causing a further distortion.

E. STRUCTURAL CHANGES IN THE LABOR MARKET

The framework in this paper has implications for empirical tests designed to detect dis-
crimination and its effects. Here, I consider the results of Hsieh, Hurst, Jones and Klenow
(2019) who show that women and black men have chosen increasingly high-skilled oc-
cupations over the past 60 years, converging to a set of choices that is more similar to
white men. Building on this observation, they ask how much of GDP growth over this
period can be explained by falling barriers such as discrimination which had previously
prevented women and black men from choosing occupations that reflected their compar-
ative advantage. They draw a distinction between two types of barriers: those in labor
markets and those in education markets.

Hsieh et al. (2019) link these two types of barriers directly to a “taste-based” dis-
crimination framework in the spirit of Becker (1957). That framework provides a micro-
foundation for two types of implicit “taxes” on workers from each disadvantaged group,
relative to white men. First, due to prejudice against hiring them, members of the disad-
vantaged workers are paid less per efficiency unit than white men: Specifically, the ratio
of the minority to white male wage is 1− τwig . Second, there is a prejudice against provid-
ing educational services to disadvantaged workers, so that their cost of attaining human
capital is 1 + τhig higher than white men. These wedges take much the same form as a
tax (τwig) on minority income and tax on their educational inputs (τhig). The “taxes” distort
educational investments, and reduce utility levels. In turn, this deters members of the
disadvantaged groups from entering the labor force or choosing high-skill occupations.

My model also features distortions to human capital investments due to implicit “taxes”.
When I introduce exogenous worker characteristics in Section 5 Part B, those distortions
may well vary between different groups. As I show, the model then produces statistical
discrimination against disadvantaged groups. Specifically, there are two groups: advan-
taged workers (A) and disadvantaged workers (D). There only difference between the
groups is that disadvantaged workers have proportionally higher investment costs. To
put this in the framework of Hsieh et al. (2019), this cost disadvantage is indistinguish-
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able from saying that disadvantaged workers have the same distribution of investment
costs as majority workers but face a “tax” of 1 + τhig on those investments.

There is also a “tax” in the labor market. The expected wage of a disadvantaged worker
is lower than that of an advantaged worker with the same productivity level. The fraction
of the overall wage gap between the two groups explained by that wedge is 1− s.

ln
(
E (w | q,A)
E (w | q,D)

)
= (1− s)

(
E (w | A)
E (w | D)

)
(31)

Following Hsieh et al. (2019), we can let τwig = 1− s be the tax wedge from labor market
discrimination. In many respects, this wedge is again very similar to the wedge in the
taste-based discrimination framework above.

At this point, we are in a position to examine the distortion to human capital invest-
ments from the two “taxes”. And it is here that we find a stark deviation from Hsieh et al.
(2019). Unlike their taste-based discrimination framework, the entire gap in productivity
levels is explained by the human capital rather than labor market discrimination.

qB

qAA
=

(
1

1 + τhB

) β
1−β

(32)

The reason for this is that statistical discrimination here is “rational” in the sense that
it reflects a true gap in human capital. In the labor market, one would observe that a
fraction s of the overall log wage gap between the groups is explained by an individual’s
own gap in the signal they send to employers (which reflects their own true productivity).
A fraction 1− s is explained by labor market discrimination, but that discrimination also
reflects a gap in productivity between the two groups.

At this point, we can turn our attention toward the empirical identification strategy
of Hsieh et al. (2019). The fundamental logic of their analysis is that: (i) human capital
disadvantages are reflected in a cohort’s outcomes in all time periods, because investments
are locked in at an early stage; and (ii) labor market barriers are reflected in outcomes
in a given time period for all cohorts at a point in time because (for example) employers’
prejudice-based discrimination does not distinguish between cohorts.

Here, there is another sharp divergence between the taste-based discrimination model
Hsieh et al. (2019) use to interpret their results, and the statistical discrimination model.
Rational statistical discrimination implies that belief formation should occur within a de-
mographic cell, so that discrimination is proportional to the gap in human capital between
white male and disadvantaged workers in that cohort. In other words, labor market ac-
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tors who statistically discriminate rationally distinguish between cohorts, and in a way
that is inseparable from direct human capital barriers. Regardless of the ultimate source
of the gap in outcomes between advantaged and disadvantaged workers in the statistical
discrimination model (e.g., cost disadvantages, differences in screening technologies, or
self-fulfilling disparities), the conclusions from Hsieh et al.’s (2019) analysis would there-
fore always be that distortions arise due to a barrier to human capital formation.

The final point to note is that there is a distortion to human capital formation in my
model that affects both the advantaged and disadvantaged group: both groups under-
invest in human capital because of the belief externality. However, Hsieh et al. (2019)
normalize the distortion to zero for white men. This observation is important because it
implies that there may be misallocation for all groups even if there is no differential misal-
location across groups.

F. LINEAR TAXATION WITHOUT PARAMETRIC ASSUMPTIONS

Without the parametric assumptions in Section 2, the analysis of linear taxation closely
follows the analysis of non-linear taxation in Section 3. Moreover, the same logic applies
at an equilibrium other than the log-normal one considered in Propositions 1 and 2. In
fact, the analysis is identical except that the tax system is restricted to be linear.

As in Section 3 then, let w (θ | π) be the wage of a worker with signal realization θ.
Similarly, those workers have average welfare weight ψ (θ), labor supply l (θ | π,T ) and
income z (θ | π,T ). The density of workers with type θ is f (θ). Finally, we need to define
εq (θ) as the elasticity of the productivity of workers with signal θ with respect to 1− τ .

Putting all of that together, we obtain the same optimal tax formula except that the
belief externality is generalized as follows:

τ∗

1− τ∗ =
1− α
εz
−
∫

Θ
ψ (θ)

[
z (θ | π,T )

z

] [
εBE
w (θ)

εq (θ)

εq (θ)

εz

]
f (θ) dθ︸ ︷︷ ︸

Generalized belief externality

(33)

where:
εBE
w (θ) =

dw (θ | π)
d (1− τ )

1− τ
w (θ | π)

(34)

is the change in the the wage paid given signal realization θ.
The log-normal equilibrium in Section 2 is a special case. First, the response of produc-

tivity is uniform, so that εq (θ) = εq. Second, the fraction of the return to investment that
workers capture is a constant: specifically, εEXT

w (θ) /εq (θ) = 1− s for all θ. If we impose
both of these restrictions here, we are left with the same formula as in Proposition 2.

This highlights the key difference in general. Compared to the log-normal equilibrium,
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the belief externality will be larger (and the optimal tax lower all else equal) if there is a
greater response among workers for whom the externality is larger, or if the externality
of those who respond disproportionately affects workers with higher incomes and higher
welfare weights. This closely mirrors the discussion of incidence in Sections 3 and 4 of the
paper with non-linear taxation, with the main difference being that non-linear taxation is
not available to respond to such differences across the distribution.
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B Continuity and Stability
(For Online Publication)

A. CONTINUITY OF INVESTMENT RESPONSES

In this appendix, I discuss the conditions required for equilibrium indeterminacy to be
avoided, and for a given equilibrium to shift continuously in response to the pertur-
bations that I consider. Assume that there is a finite number of cost types, indexed by
i = 1, . . . , |K|, let x be the vector of investment decisions xi, and define qi = Q(xi).

For each i, Assumption 3 ensures that the following binding first-order condition char-
acterizes the optimal investment decision.

λi (x,T ) = Q′ (xi)
∫

Θ
v (θ|π,T ) ∂f (θ|q)

∂q

∣∣∣∣
q=qi

dθ− ki = 0 (35)

Differentiating λi (x,T ) with respect to xj , we obtain the effect of higher investment by
type j on the investment returns of type i. There are two cases:

∂λi
∂xj

(x) =

λ
q
ii + λwij if i = j

λwij if i 6= j
(36)

where λqii is type k’s second-order condition, and λwij is the effect via employer beliefs.

λqii = Q′′(xi)
∫

Θ
v (θ|π,T ) ∂f (θ|q)

∂q

∣∣∣∣
q=qi

dθ+Q′(xi)
2
∫

Θ
v (θ|π,T ) ∂

2f (θ|q)
∂q2

∣∣∣∣
q=qi

dθ (37)

λwij = Q′(xj)
∫

Θ
uc (θ)

[
1− T ′ (z (θ|π,T ))

]
l (θ|π,T ) ∂w (θ|π)

∂qj
f (θ|qi) dθ (38)

Letting p (kj) be the probability of drawing type kj , the equation for ∂w(θ|π)
∂qj

is as follows.

∂w (θ|π)
∂qj

=

(
f(θ|qj) + [qj −w(θ|π)]

∂f(θ|q)
∂q

∣∣∣∣
q=qj

)
p (kj) (39)

The partial derivatives (equation 36) can be arranged to form the Jacobian Jf ,x.

Jf ,x =


∂λ1
∂x1

(x) . . . ∂λ1
∂x|K|

(x)
... . . . ...

∂λ|K|
∂x1

(x) . . .
∂λ|K|
∂x|K|

(x)

 (40)

Next, let dc (θ|π,T ) = −dT (z (θ|π,T )) be the Fréchet derivative with respect to T of
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consumption by a worker with signal θ. The Fréchet derivative of v (θ|π,T ) is then:

dv (θ|π,T ) = u′ (z (θ|π,T )− T (z (θ|π,T )))× dc (θ|π,T )

And in turn, the Fréchet derivative of fi (x,T ) is given by dfi (x,T ).

dλi (x,T ) = Q′ (xi)
∫

Θ
dv (θ|π,T ) ∂f (θ|q)

∂q

∣∣∣∣
q=qi

dθ (41)

These derivatives can be stacked into a |K| × 1 vector dλ (x,T ).
Providing that Jf ,x invertible, the Implicit Function Theorem implies that there is a

neighborhood around x and T in which there is a unique Fréchet differentiable function
mapping T to x, and the response of investments is given by dx = −J−1

f ,x × dλ (x,T ). As
I argue below, invertibility of Jf ,x is the generic case.

B. INVERTIBILITY OF Jf ,x

I next show that, if Jf ,x is not invertible, it can be rendered invertible by an arbitrar-
ily small perturbation to the investment technology Q (x), which preserves both the key
properties of that technology and the existing equilibrium. Moreover, starting with any
equilibrium in which Jf ,x is invertible, this clearly remains the case after a similarly small
perturbation. In these two senses, invertibility of Jf ,x is generic.

First, I construct a parameterized family of functions, Q̃ (x|c), where c is a vector of
strictly negative real numbers c1, . . . c|K|. Each function in this family retains the key prop-
erties of Q (x), but the second derivative of Q̃ (x|c) evaluated at xj is cj .

1. Take each xj and define a narrow domain xj ± r where r > 0 is arbitrarily small. On
this domain, define a function Bj (x|cj) = Q (xj) +Q′ (xj) (x− xj) + 1

2cj (x− xj)
2.

Bj (x|cj) has the same level and derivative as Q (x) at xj , but B′′j (xj |cj) = cj .

2. Link the functions Bj (x|cj) to form any twice-differentiable function Q̃ (x|c) with
Q̃ (0|c) = 0, Q̃′ (x|c) > 0, Q̃′′ (x|c) > 0 and limx→0 Q̃′ (x|c) = ∞. This is always
possible, since r is small and Q strictly concave.

3. Let Q̂ (x|c,α) = αQ̃ (x|c) + (1− α)Q (x) with α ∈ (0, 1).

Next, I replace Q (x) with Q̂ (x|c,α) in the economy described in Section 1. For any c,
there remains an equilibrium with the same investment decisions. However, the diagonal
elements of the Jacobian Jf ,x are replaced by:

λqii = ci

∫
Θ
v (θ|π,T ) ∂f (θ|q)

∂q

∣∣∣∣
q=Q(xi)

dθ+Q′(xi)
2
∫

Θ
v (θ|π,T ) ∂

2f (θ|q)
∂q2

∣∣∣∣
q=Q(xi)

dθ.
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Moreover, λqii scales with ci since
∫

Θ v (θ|π,T ) ∂f(θ|q)
∂q

∣∣∣
q=qi

dθ > 0. Non-diagonal elements

of Jf ,x are unchanged.
Finally, let cj = Q′′ (xj)+ εj < 0 where εj are distinct real numbers with εj < −Q′′ (xj).

For small enough α, Q̂ (x|c,α) is an arbitrarily close approximation of Q (x). However,
the Jacobian Jf ,x of the new economy is invertible. Specifically, any two rows that were
collinear are no longer collinear; and, since α is small, no two rows are newly collinear.

C. STABILITY OF EQUILIBRIA

Restricting the set of equilibria to those that are stable is one way to ensure that the econ-
omy does not switch equilibria in response to a perturbation such as that described in
Section 4. To define such a notion of stability, suppose that the economy evolves accord-
ing to the following backward-looking dynamic adjustment process:

xk,t+1 ∈ X∗k,t+1 = argmax
x̃∈R+

∫
Θ
v (θ|πt,T ) f (θ|Q (x̃)) dθ− kx̃ (42)

where:

v (θ|πt,T ) = w (θ|πt,T ) l (θ|πt,T )
l (θ|πt,T ) ∈ L∗ (θ|πt,T ) = argmax

l̃j∈R+

u
(
w (θ|πt) l̃− T

(
w (θ|πt) l̃

)
, l̃
)

w (θ|πt) =
∫
KQ(xk,t)f (θ|Q(xk,t)) dG (k)∫

K f (θ|Q(xk,t)) dG (k)

In general, this does not necessarily define a unique path for the economy. However, As-
sumptions 1 to 3 ensure that this is true locally because both xk,t+1 and l (θ|πt,T ) are both
uniquely pinned down and vary continuously with other agents’ investment decisions.

Thus, letting x(T ) be a set of equilibrium investment decisions, the dynamic adjust-
ment process above can be approximated locally around x(T ) by a first-order linear sys-
tem xt+1(T )−x(T ) = B [xt(T )−x(T )]. If all the eigenvalues of the matrix B have mod-
uli strictly less than one, then the equilibrium is locally asymptotically stable. Providing
that Jf ,x is invertible (see Part A above) so that there is a locally unique Fréchet differen-
tiable function mapping T to x, local asymptotic stability in turn ensures that the economy
does not switch equilibria in response to a small change in the tax schedule.

D. EXISTENCE OF PURE STRATEGY EQUILIBRIA

In this appendix, I discuss the existence of a set of pure strategy equilibria. I begin with
a practical observation: fixing any signal technology f (θ|q), there is always a production
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function Q (x) that satisfies the assumptions in Section 1 while also guaranteeing the ex-
istence of an equilibrium with the empirically observed wage distribution, labor supply
elasticity and wage elasticity. It can also be ensured that this equilibrium is stable. Indeed,
I use these facts in my simulations in Section 4.

Despite the fact that there is always an equilibrium that matches any observed wage
distribution, it is important to note that uniqueness is not guaranteed. In fact, there is
always a “bad” equilibrium in which no worker invests at all and wages are zero for all
signal realizations. This equilibrium is always unstable given the assumptions in Section
1. However, it is not generally possible to rule out the potential for multiple internal stable
equilibria. I discuss this issue further in Appendix D.

It is harder to provide general weak conditions for the existence of a stable equilibrium
with positive investment in the general model without backing out a set of fundamentals
from one that is observed. To see why, let q∗i (q) be an expected utility maximizing produc-
tivity level of type i, given that employers believe that the vector of productivity levels is
q. The assumption that limx→0Q′ (x) = ∞ combines with the regularity assumptions on
the signal technology to ensure that all individuals’ optimal productivity levels are greater
than employers believe them to be: i.e., q∗i (q) > qi for all i = 1, . . . , |K| if q is close enough
to zero. If we were also to assume that the marginal return to investment is zero above
some q (effectively truncating the relevant strategy space), then q∗i (q) < q if employers be-
lieve that all workers have productivity level q. Thus, if q∗i (q) were globally continuous,
we would be guaranteed another equilibrium. The problem is that this need not be the
case without restrictions that guarantee concavity of investment returns.

Despite this difficulty in providing general conditions, it is also clear that this is an
issue that need not be of great concern. Not only does the calibration in Section 4 back out
a well-defined stable equilibrium from the data, but the equilibrium remains well-defined
as the optimization algorithm explores many different parts of a multi-dimensional space.
In addition, the examples in Section 2 and Appendix D have closed-form solutions. There
are many other such examples.
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E. SERIES EXPANSION, DIRECT AND INDIRECT EFFECTS

At a stable equilibrium, the investment response can be decomposed into direct and indi-
rect effects of a tax change. First, let S be the diagonal matrix of second-order conditions:

S =


S1 . . . 0
... . . . ...
0 . . . S|K|


where:

Si = Q′′(xi)
∫

Θ
v (θ|π,T ) ∂f (θ|q)

∂q

∣∣∣∣
q=qi

dθ+Q′(xi)
2
∫

Θ
v (θ|π,T ) ∂

2f (θ|q)
∂q2

∣∣∣∣
q=qi

dθ

The response of investment can then be written as dx = −J−1
f ,xSS

−1dλ (x,T ). Letting I be
the identity matrix, the matrix J−1

f ,xS can be rewritten as the following Neumann series,
providing that series is convergent.

J−1
f ,xS =

∞

∑
k=0

(
I − S−1J

)k
The matrix B = I − S−1Jf ,x captures the effect of a change in each worker i’s investment
decision on the investment decision of each other worker j.

Convergence of the Neumann series above corresponds to the case of stability dis-
cussed in Part D. At any stable equilibrium, we can thus write the response of the vector
of investment choices to a change in the tax schedule as the following infinite series.

dx = −S−1dλ (x,T )︸ ︷︷ ︸
Direct impact

−
∞

∑
k=1
BkS−1dλ (x,T )︸ ︷︷ ︸

Indirect wage response

(43)

The intuition here is similar to Proposition 1 of Sachs, Tsyvinski and Werquin (2019). The
first term captures the partial equilibrium response of investment to a chance in the tax
schedule. The second term accounts for general equilibrium cross-wage effects.

Each term in the infinite series on the right-hand side of equation 43 captures a “round”
of cross-wage effects. The first term measures the indirect of effect of partial equilibrium
investment responses on investment choices. The nth term then captures the successive
impact of changes induced by round n− 1. At a stable equilibrium, each round is smaller
than the last, and the series converges. The sum of all of these rounds of adjustment
measures the total shift in equilibrium investments.
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C Beyond the First Order Approach
(For Online Publication)

Proposition 3 provides the derivative of social welfare with respect to a perturbation in the
tax schedule, providing that there is a locally continuous selection around the initial point,
(E(T ),T ). I adopted assumptions that ensure this is true for an arbitrary tax system. The
proposition also states a condition that holds at an optimum, providing that the planner
does not systematically locate at a point where the regularity conditions break down.

In this appendix, I discuss complications that arise when the planner does in fact have
a reason to locate at a discontinuity, in which case the derivatives in Proposition 3 are not
defined. I also discuss reasons why the planner’s first-order condition is not sufficient for
optimality. For expositional clarity, I focus on a particularly simple case of the general
model, in which the planner is restricted to a linear tax, labor supply is perfectly inelastic,
and investment decisions are binary.3 This greatly simplifies the analysis of this subset of
issues, while providing insights that are conceptually general.

A. SPECIAL CASE OF THE MODEL WITH BINARY INVESTMENT

In this special case of the model, investment is dichotomous. A worker decides to become
qualified (q) at cost k, or remain unqualified (u) at no cost. A qualified worker who is hired
produces a fixed payoff ω > 0 for the firm who hires her, while an unqualified worker
produces zero. As before, the cost distribution G (k) is the probability that a worker has
investment cost no greater than k; here, I additionally assume that G (0) = 0 and that
G (k) is continuously differentiable, with density g (k).

With binary investment, an employer’s prior belief is summarized by the fraction of
workers it believes have invested. In addition, employers see a common signal θ ∈ [0, 1],
which in this case has CDF Fi (θ) and PDF fi (θ) where i ∈ {q,u} and fu (θ) /fq (θ) is
strictly decreasing in θ. In equilibrium, firms’ prior beliefs coincide with the true equilib-
rium probability π that a worker invests; and each firm offers to pay the worker a wage
w (θ|π) equal to her expected marginal product.

w (θ|π) = ω×
πfq (θ)

πfq (θ) + (1− π) fu (θ)

The worker accepts her best offer, supplies a unit of labor and receives that wage. If
she invested, she obtains utility v (θ|π, τ ) − k = u ((1− τ )w (θ|π) + τw) − k, where τ is
a linear income tax, and w = πω is the average wage. If she did not invest, she receives
v (θ|π, τ ) = u ((1− τ )w (θ|π) + τw). I assume that u (c) is strictly increasing, strictly con-
cave and satisfies Inada conditions: limc→0 u′ (c) =∞ and limc→∞ u

′ (c) = 0.
3The model with binary investment is similar to Moro and Norman (2004).
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Integrating over θ, the expected utilities (gross of investment costs) for an investor (vq)
and non-investor (vu) are given by equations 44 and 45.

vq (π|τ ) =
∫ 1

0
v (θ|π, τ ) dFq (θ)− k (44)

vu (π|τ ) =
∫ 1

0
v (θ|π, τ ) dFu (θ) (45)

Since workers invest if their expected return is greater than their cost, this implies an
investment rate of G (β (π|τ )) where β (π|τ ) = vq (π|τ )− vu (π|τ ).

The final requirement of equilibrium is that workers invest at a rate that coincides
with employers’ beliefs. This is embodied in equation 46, which states that the fraction of
investors must be equal to the fraction of workers that employers believe are qualified.

π = G (β (π|τ )) (46)

For a given tax rate τ , equation 46 defines a fixed point as shown in Figure C1. An em-
ployer belief π, combined with the tax τ , pins down the investment return and an invest-
ment rate, G (β (π|τ )).

Any point on the 45 degree line constitutes an equilibrium, since employers’ beliefs
are confirmed. At the extremes, either π = 0 or π = 1 ensure that there is no return to
investment, since employers who are certain of a worker’s decision place no weight on the
signal. There is thus always an equilibrium in which no workers invest, and all workers
receive a zero wage.4 Proposition 6 provides sufficient conditions for there to be others.
For example, the economy in Figure C1 has four equilibria: 0, E1, E2 and E3.

Proposition 6. Assume that φ (θ) = fu (θ) /fq (θ) is continuous and strictly positive on [0, 1].
If there exists π such that G (β (π|τ )) > π then there are multiple solutions to condition 46.

Intuitively, these conditions are satisfied if the returns to investment are high enough,
as ensured by a large value of ω or a low enough tax rate. In turn, this means there is some
employer belief π such that the fraction of investors given that belief, G (β (π|τ )), is higher
than π. Since G (β (1|τ )) = 0, and the regularity assumptions ensure that G (β (π|τ )) is
continuous π, this guarantees that there is a belief π∗ > 0 such that π∗ = G (β (π∗|τ )).

B. OPTIMAL TAXATION WITH BINARY INVESTMENT

Tax policy can be analyzed in the same way as in the general model. Raising the linear
tax τ causes G (β (π|τ )) to shift down for every employer belief π. As a result, the location

4Tweaking the assumptions so that G(0) > 0 eliminates the equilibrium with zero investment.
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FIGURE C1: EQUILIBRIA AND TAXATION
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Figure notes. This figure shows an example economy with binary investment. In panel (a), the aggregate rate
of investment implied by worker and firm optimization, G (β (π)), is plotted against the employer prior, π.
Any intersection between this line and the 45 degree line is an equilibrium. The arrows show the direction
in which each equilibrium moves as τ rises. Panel (b) shows the set of equilibria over a range of values of τ .
Pareto dominant equilibria are shown by the black line segments.

of an equilibrium falls if G (β (π|τ )) crosses the 45 degree line from above, and rises if it
crosses from below, as shown in panel (b) of Figure C1.

For simplicity, I assume that agents play the planner’s preferred equilibrium, which
ensures that investment and welfare always increase as τ is lowered.5 The arguments that
follow do not depend on this assumption. However, it provides a concrete equilibrium
selection criterion that is especially compelling here because equilibria for a given tax rate
are Pareto-ranked, with higher investment corresponding to higher welfare. In Figure C1,
the black line traces out the Pareto-dominant equilibria.

Proposition 7. Assume that multiple values of π satisfy equation 46 for a given tax rate τ . Let πi
and πj be two solutions. Welfare is higher for every worker under πi than πj if and only if πi > πj .
Moreover, investment in the Pareto-dominant equilibrium increases as τ is lowered.

Next, to characterize optimal taxation, define εz as the elasticity of average income
with respect to the retention rate. Second, let u′θ be the marginal utility of consumption of

5The set of equilibria can alternatively be refined by requiring stability in the sense introduced in Ap-
pendix B. In this case, the dynamic adjustment process is: πt+1 = G (β (πt|τ )). Stability amounts to a re-
quirement that the absolute value of the slope of G (β (π|τ )) is less than one, which implies that investment
falls when τ rises. In Figure C1, both the zero investment equilibrium and E2 are unstable.
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an individual who sends signal θ and therefore receives wage w (θ|π). Finally, let ũ′θ be the
same individual’s marginal utility relative to the average: i.e., ũ′θ = u′θ/ū

′
θ. For simplicity,

I assume here that the planner’s social welfare function is linear, but additional concavity
from the social welfare function does not change the analysis.

Proposition 8 provides a necessary condition for the optimality of τ , in the same form
as Propositions 2 and 3. As before, there is a trade-off between redistribution from high-
wage to low-wage workers, a fiscal externality and a belief externality. Ignoring the belief
externality, an optimal τ at which this condition holds would always be strictly positive.
The belief externalitywz provides an efficiency motive for intervention and pushes toward
lower tax rates.

Proposition 8. Fix a value of τ and an investment rate π∗ (τ ) > 0, which satisfies equation 46.
If g (β (π∗ (τ ) |τ )) β′ (π∗ (τ ) |τ ) 6= 1 and τ is optimal, then the following condition holds:

τ

1− τ =
vτ − εzwz

εz
(47)

where vτ = (1− π)
∫ 1

0 ũ
′
θ [fu (θ)− fq (θ)] dθ, εz is the elasticity of income to the retention rate

1− τ , and wz = 1
ω

∫ 1
0 ũ
′
θ
∂w(θ|π)
∂π [πfq (θ) + (1− π) fu (θ)] dθ is the belief externality.

Proposition 8 parallels the results from the linear tax example (Proposition 2) and non-
linear taxation (Proposition 3). The requirement that g (β (π∗ (τ ) |τ )) β′ (π∗ (τ ) |τ ) 6= 1
simply suffices to ensure the investment rate varies continuously with τ at the optimum,
which is equivalent to invertibility of the Jacobian, Jf ,x, discussed in Appendix B. Graph-
ically, it amounts to a requirement that G (β (π|τ )) is not tangent to the 45 degree line in
Figure C1. If it were tangent, then it would imply an upward discontinuity in the equilib-
rium correspondence as at τB in Panel (b).

C. LIMITATIONS OF THE FIRST ORDER APPROACH

The model with binary investment provides a transparent and flexible platform to discuss
complications that could lead to discontinuity at the optimum or prevent my necessary
conditions from being sufficient for optimality. The first caveat is that condition 8 may
hold at other points. For example, the planner’s optimal tax rate may be A1 in panel (b)
of Figure C1, but the first-order condition may also hold at C. This a natural limitation of
the first-order approach, which is not specific to this model.

The second caveat is more interesting: in some economies, there may be an incentive for
the planner to choose a tax rate that places the economy at a discontinuity. For example,
consider again panel (b) of Figure C1. By Proposition 8, we know that B1 dominates
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B2. The complication is that it is possible for social welfare to be increasing in τ as we
approach τB from below and also as we approach τB from above, so that τB is the optimal
tax rate. However, equation 47 does not hold at the discontinuity. This is not a violation
of Proposition 8, since g (β (π|τ )) β′ (π|τ ) = 1 at B1. However, it highlights a conceptually
important limitation of the first-order approach in this context.
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D Multiple Groups and Self-fulfilling Disparities
(For Online Publication)

A possibility with multiple equilibria is that employers have different beliefs about mem-
bers of distinct groups (e.g., black and white workers). Although this is ruled out if agents
always play the planner’s preferred equilibrium and the groups are identical, asymmet-
ric equilibria could well arise in reality. This is the classic case of self-fulfilling statistical
discrimination, as analyzed by Arrow (1973), Coate and Loury (1993), and others. In this
appendix, I discuss the implications of this for optimal taxation.

My first step is to adapt the model in Appendix C by dividing workers into an advan-
taged (A) group and a disadvantaged (D) group. Specifically, I assume that a worker is of
type A with probability λA and of type D with probability λD = 1− λA. The two groups
are identical in fundamentals. As in Appendix C, the planner is restricted to linear taxa-
tion. However, she can set a different tax rate τj for each group j ∈ {A,D}, and a lump
sum transfer TA→D from As to Ds. These three variables constitute a tax system T .

Definition 3. A tax system T is a triple (τA, τD,TA→D), comprised of a marginal tax rate τj for
each group combined with an intergroup transfer TA→D.

Equilibrium in the model with two distinct groups can be characterized as follows.
First, net of investment costs, a worker of type j with signal θ receives utility vj (θ|πj ,T ).

vA (θ|πA,T ) = u

[
(1− τA)ω

πAfq (θ)

πAfq (θ) + (1− πA) fu (θ)
+ τAπAω−

TA→B
λA

]
vD (θ|πD,T ) = u

[
(1− τD)ω

πDfq (θ)

πDfq (θ) + (1− πD) fu (θ)
+ τDπDω+

TA→D
λD

]

Gross of investment costs, a worker’s expected utility is thus vjq (πj |T ) if she invests, and
vju (πj |T ) if she does not.

vjq (πj |T ) =
∫ 1

0
vA (θ|πj ,T ) dFq (θ) vju (πj |T ) =

∫ 1

0
vB (θ|πj ,T ) dFu (θ)

The model remains otherwise unchanged from Appendix C. Workers invest if the return,
βj (πj |T ) = vjq (πj |T )− vju (πj |T ), is greater than their cost, implying an investment rate of
G (βj (πj |T )). Equilibrium requires that πj = G (βj (πj |T )), j ∈ {A,D}.

Unlike Appendix C, I do not assume that agents coordinate on the planner’s preferred
equilibrium. Instead, I follow the approach of Section 3, which applies given any contin-
uous selection of equilibria. Specifically, for any given tax schedule T , let π(T ) be the set
of pairs (πA, πD) such that πj (T ) = G(βj(π(T )|T )) for j ∈ {A,D}. The correspondence
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π(T ) suffices to characterize the set of equilibria for each tax schedule. I define a selection
by choosing one equilibrium pair π†(T ) for each tax schedule from this set.

Optimal taxation is then similar to the case with one group. The planner values both
groups equally, so welfare is the weighted average W = λAWA + λDWD, where:

Wj = πjv
j
q (πj |T ) + (1− πj) vjq (πj |T )−

∫ vjq(πj |T )−vju(πj |T )

0
kdGj (k) .

Within each group, the same perturbation arguments apply and the condition required
for τj to be optimal is unchanged. The only additional complication is the inter-group
transfer, which is set so that the average marginal utility is the same for As and Ds.

Proposition 9. If π†(T ) is locally continuous and T is optimal, the following conditions hold.

τj
1− τj

=
vj,τ − εjzwjz

εjz
(48)∫

θ
u′A,θdF (θ) =

∫
θ
u′B,θdF (θ) (49)

where vj,τ = (1− πj)
∫ 1

0 ũ
′
j,θ [fu (θ)− fq (θ)] dθ, εjz is the income elasticity of group j, and wjz =

1
ω

∫ 1
0 ũ
′
j,θ

∂w(θ|πj)
∂πj

[πjfq (θ) + (1− πj) fu (θ)] d (θ) is the belief externality.

To build intuition, consider the case in which TA→D is constrained to be zero and π†(T )
selects equilibria that are symmetric in the sense that πA = πB . This is always possible,
because the groups are identical. The planner’s choice of τj is then isomorphic to the
model with a single group, so τA = τB and πA = πB . Moreover, if condition 48 holds,
equation 49 must as well. Starting from equal treatment (τA = τB and TA→D = 0), there is
therefore no first-order gain from slightly changing the tax system. This implies that the
planner would not want to set TA→D 6= 0, even if she could. Intuitively, if the two groups
are identical and equilibria are symmetric, there is no motive for the planner to choose a
tax system that favors one group over the other.

In general, however, it is possible that π†(T ) includes non-symmetric equilibria, which
raises the possibility of “self-fulfilling” differences between groups. In this case, even
through groups A and D are ex ante identical, it is not generally true that πA = πB even at
the planner’s optimal choice of T . The optimal T may then involve different marginal tax
rates for A and B workers, and an inter-group transfer.

Although Proposition 9 still holds in this non-symmetric case, the potential for self-
fulfilling asymmetries raises the question of whether there are policies that can eliminate
this problem. One possibility is for the planner to set a tax that conditions on the aggregate
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level of investment, which would always allow the planner to ensure Pareto efficiency.
Alternatively, one could imagine a dynamic policy that transitions the economy from one
equilibrium to another. For example, one could temporarily implement a very low tax
rate and then ratchet it back up, ensuring convergence to a Pareto efficient equilibrium.
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E Approximately Optimal Taxation
(For Online Publication)

This appendix provides a way of calculating an approximately optimal tax schedule given
only a few measurable statistics. Two general principles underlie the approach. First,
I assume that a change in T ′ (z) primarily causes individuals with income close to z to
respond. Second, I assume that the incidence of the belief externality falls on workers
with similar welfare weight, labor supply and tax rate to those with income z.

Part E of Section 3 shows that the welfare impact of a wage change due to the belief
externality is weighted by Ω

(
z, θ̃
)
= ψz(z(θ̃|π,T ))

[
1− T ′(z(θ̃|π,T ))

]
l(θ̃|π). Using this,

and letting l (z) be the labor supply at income z, I define Ω̃
(
z, θ̃
)

as the difference between
the weight on externalities at income z(θ̃|π,T ) and the weight at income z.

Ω̃
(
z, θ̃
)
= ψz(z(θ̃|π,T ))

[
1− T ′(z(θ̃|π,T ))

]
l(θ̃|π)− ψz(z)

[
1− T ′(z)

]
l(z)

The belief externality can then be rewritten as an approximation, plus a covariance bias.

BE (z) = −dτdz
{
ψz(z)

[
1− T ′(z)

]
l(z)

[∫
Θ

(
dw(θ̃|π)

d [1− T ′(z)]

)
f(θ̃)dθ

]
(50)

+
∫

Θ
Ω̃
(
z, θ̃
) ( dw(θ̃|π)

d [1− T ′(z)]

)
f(θ̃)dθ

}
︸ ︷︷ ︸

Covariance bias

Next, without loss of generality, I write the externality as a share of the average wage rise.

∫
Θ

dw(θ̃|π)
d [1− T ′(z)]f(θ̃)dθ̃ = (1− s (z)) dw

d [1− T ′(z)] (51)

Bringing everything together, expression 18 is approximately zero if:

FE (z) + ME (z)− (1− s (z))ψz (z) l (z)
[
1− T ′(z)

] dw

d [1− T ′(z)] = 0. (52)

An advantage of this equation is that it facilitates assumptions about how the belief
externality varies with income without finding corresponding distributional assumptions.
As in Section 3, the correction term in equation 52 is larger if: (i) investment is more re-
sponsive; (ii) workers capture little of their return to investment; or (iii) a worker supplies
a large amount of labor, faces a low tax rate, and receives substantial welfare weight.

Figure E1 shows the results when equation 52 is implemented in my simulated econ-
omy. The optimal and approximately optimal tax schedules are similar at lower levels
of income, but the approximation deteriorates at higher levels of income where the true
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FIGURE E1: APPROXIMATELY OPTIMAL TAXATION
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Figure notes. This figure shows the results of the simulation described in Appendix I. The solid red line
shows the optimal tax schedule, the dashed blue line shows the naïve schedule, and the dotted black line
shows a schedule what would be accepted by a planner who implemented equation 52.

impact of the externality is more disperse. Starting from the naïve benchmark, 60 percent
of the gains from optimal taxation are achieved via the approximation.
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F Unproductive Signaling
(For Online Publication)

If the productivity of a worker depends directly on her type as well as her human capital
investment, it is possible for investment to play an unproductive or ‘pure’ signaling role
as in Spence (1973). Investment returns then reflect both a genuine increase in skill, and
partial revelation of innate ability. In general, the overall externality from investment may
then be more positive or more negative than in the model without innate ability.6

A. UNPRODUCTIVE SIGNALING: EXAMPLE WITH LINEAR TAXATION

I start with an extension of the example in Section 2, and then study the general case.
Productivity, q = nαh1−α, is a Cobb-Douglas combination of human capital h and innate
ability n. Human capital, h = xβ , is attained via investment, x. Inherent ability is nega-
tively related to a worker’s investment cost: n = 1/k. Finally, the ability distribution and
the conditional signal distribution are log-normal.

n ∼ LN
(

lnµn −
σ2
n

2 ,σ2
n

)
ln θ = ln x+ ln ξ ln ξ ∼ N

(
0,σ2

ξ

)
There is again an equilibrium in which income and productivity are log-normally dis-
tributed. The elasticities of productivity and income are functions of the labor supply
elasticity, εl, the production function elasticity, β, and the importance of innate ability, α.

Proposition 10. For any tax rate τ , there is an equilibrium in which productivity and income are
log-normally distributed. Assuming this equilibrium is played, the elasticities of productivity and
investment with respect 1− τ are as follows.

εq =
β (1− α) (1 + εl)

1− β (1− α) (1 + εl)
εz =

εl + β (1− α) (1 + εl)

1− β (1− α) (1 + εl)

This example nests the version in Section 2 in which investment is purely productive.
When α = 0 so that q = h, the two elasticities εq and εz collapse to that case, and equation
53 collapses to equation 11. When α = 1 so that q = n, productivity does not respond to
taxation, and the income elasticity collapses to the elasticity of labor supply.

The first-order condition for the optimal tax is given by Proposition 11. It features
a second externality correction, 1 + sα (1 + εl), which pushes toward higher rather than

6The empirical importance of unproductive signaling is hard to assess. For formal education, evidence
from school reforms demonstrate substantial productive effects (Meghir and Palme 2005, Aakvik, Salvanes
and Vaage 2010, Oreopoulos 2006), but there is also evidence to suggest a role for pure signaling (Lang and
Kropp 1986, Bedard 2001, Aryal, Bhuller and Lange 2020). See Lange and Topel (2006) for a discussion.
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lower taxes. Intuitively, there is no social benefit from the part of the private return to
investment that comes from signaling innate ability, which implies that this return comes
at the expense of other workers. The logic here is similar to the rent transfer effect in
Section 3. Holding fixed the decisions of others, a worker who invests more hurts other
workers, because she becomes more likely to be pooled by employers with workers who
have higher productivity than herself, thereby lowering the wages of those other workers.

Proposition 11. Assume that the log-normal equilibrium described in Proposition 10 is played.
Then the first-order condition for the optimal linear tax τ∗ is:

τ∗

1− τ∗ =
1− γ

[
1+(1−s)εq
1+sα(1+εl)

]
εz

(53)

where s = σ2
x

σ2
x+σ2

ε
and γ = En

(
ψn
ψ
zn
z

)
.

Since imperfect employer information now generates two opposite-signed externali-
ties, there are combinations of α and s that cause them to perfectly offset each other.

β (1− α)︸ ︷︷ ︸
Social benefit

= s

[
α+ β (1− α)
1 + sα (1 + εl)

]
︸ ︷︷ ︸

Private benefit

⇐⇒ sα (1 + εl)︸ ︷︷ ︸
Signaling

= (1− s) εq︸ ︷︷ ︸
Learning

The condition on the left states that the social and private benefits of investment are
aligned. The one on the right states that the unproductive component of the private return
is equal in magnitude to the part of the productive component that is not captured by the
individual. If these conditions hold, condition 53 collapses to the standard optimal tax
formula. Any other parameter values imply a correction on efficiency grounds.

As these equations show, noisier employer information implies a smaller private ben-
efit of investment for a given social benefit. Specifically, lower s dampens the signaling
externality but strengthens the learning externality. In this sense, evidence of residual
employer uncertainty (Lange 2007, Kahn and Lange 2014) suggests a more positive exter-
nality, and implies lower optimal tax rates than if employers had better information.

B. UNPRODUCTIVE SIGNALING: GENERAL CASE WITH OBSERVABLE INVESTMENT

I next move beyond the simple example, and extend the general model outlined in Section
1 to allow for unproductive signaling. However, I start with the simpler case in which
investment is perfectly observable. This entails replacing the production function with
q = Q (x, k), so that productivity is a direct function of the worker’s type. Employers
observe productivity, x, but do not observe productivity, q.
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This results in a deterministic equilibrium mapping from investment to wages, w (x).
Taking this as given, the worker’s investment problem is:

max
x∈R+

v (w (x) |T )− kx (54)

where:
v (w (x) |T ) = max

l∈R+

u(w (x) l− T (w (x) l), l). (55)

The solutions to problem 54 for each cost type jointly define a second mapping, x (k), from
costs to investment levels.

To simplify the analysis, I assume w (x) is one-to-one. Given this, I provide condi-
tions in Part C that guarantee x (k) and w (x) are differentiable, which ensures that the
investment choice for a worker with cost k is characterized by a first-order condition:

uc (z (k)− T (z (k)) , l (k))
[
1− T ′ (z (k))

]
l (k)w′ (x (k)) = k (56)

where l (k) is the level of labor supply that solves problem 55, and z (k) = w (x (k)) l (k)

is the equilibrium income of a worker with cost k.
This relationship between innate ability and investment drives a wedge between the

private and social returns, which I refer to as the unproductive component.

Qk (x (k) , k)
x′ (k)︸ ︷︷ ︸

Unproductive

= w′ (x (k))︸ ︷︷ ︸
Private

− Qx (x (k) , k)︸ ︷︷ ︸
Productive (social)

(57)

If Qk (x (k) , k) < 0 so that costs are positively related to ability, there is a positive exter-
nality from investment: an individual who invests more makes others look better because
she has higher productivity than those who invest at that level in equilibrium. Conversely,
if Qk (x (k) , k) < 0, there is a negative externality from investment.

These results provide a foundation for policy analysis that mirrors Section 3. Specif-
ically, consider again a perturbation that raises the marginal tax rate by dτ on income
between z and z + dz, while raising the intercept of the tax schedule to ensure that the
resource constraint still holds. A different but related form of belief externality arises.

BE (z) = −dτdz
∫
K
ψ(k)

[
1− T ′(z(k))

]
l(k)

dx(k)

d [1− T ′ (z)]
[
w′(x(k))−Qx(x(k), k)

]
dG(k)

This equation for BE (z) can again be written in terms of the observable income distribu-
tion, and combined with the fiscal externality and mechanical effect to obtain a necessary
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condition for optimality of the tax system:

FE (z) + ME (z) +
∫
Z
z̃ψ (z̃)

(
1− T ′ (z̃)
1− T ′ (z)

)
εx̃(z̃),1−T ′(z)

[
εPrivate
w̃(z̃),x̃(z̃) − ε

Social
w̃(z̃),x̃(z̃)

]
dH (z̃) = 0

(58)
where w̃ (z̃) and x̃ (z̃) are the wages and investment levels of a worker with income z̃, and
the elasticities are defined as follows.

εPrivate
w̃(z̃),x̃(z̃) = w′ (x (k))

x (k)

w (k)
εx̃(z̃),1−T ′(z) =

dx (z̃)

d [1− T ′ (z)]
1− T ′ (z)
x (z̃)

εSocial
w̃(z̃),x̃(z̃) = Qx (x (k) , k) x (k)

w (k)

Note the similarity between expression 18 and equation 58. This is not coincidental: as
before, employer inference causes misalignment between the private and social returns to
investment, and the resulting externality enters social welfare in the same way.

C. DIFFERENTIABILITY OF w(x) AND x (k)

I next provide conditions under which w (x) and x (k) are differentiable in Part B above.
As in Section 3, I assume that problem 55 is strictly concave given a wage w = w (x) so
that the labor supply choice can be characterized by a first-order condition (equation 59):

wuc(wl
∗(w)− T (wl∗(w)) , l∗(w))

[
1− T ′ (wl∗(w))

]
+ ul(wl

∗(w)− T (wl∗(w)) , l∗(w)) = 0
(59)

where l∗(w) = argmaxl∈R+
u(wl− T (wl), l).

Next, I define v̂ (x) = v (w (x) |T ), and let xFB (k) = argmaxx v (Q (x, k) |T )− kx be
the investment level chosen by an agent with cost k in the equivalent problem with per-
fect employer information. Using these definitions, I adopt three assumptions regarding
problem 54, which can be viewed as restrictions on the investment technology, Q (x, k).

Assumption 5. The solution to the first best contracting problem, xFB (k), is unique for all k.

Assumption 6. For all k ∈ K, v̂ (x) is strictly concave around xFB (k).

Assumption 7. ∃κ > 0 such that v̂′′ (x) ≥ 0⇒ v̂′ (x) > κ for all (k,x) ∈ K×R+.

A sufficient condition for Assumption 5 to hold is that the first best contracting problem
is strictly concave, which is always true given sufficient concavity of the investment tech-
nology. Assumption 6 simply states that problem 54 is locally strictly concave around the
first-best investment choice, while assumption 7 is a global equivalent that is weaker than
strict concavity but stronger than strict quasi-concavity.
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Assumptions 5, 6 and 7 jointly ensure that x (k) is differentiable for all k ∈ K (see
Mailath and von Thadden 2013), which in turn implies that w (x) is differentiable and that
the following condition holds for all k:

uc (z (k)− T (z (k)) , l (k))
[
1− T ′ (z (k))

]
l (k)w′ (x (k)) = k (60)

where l (k) = l∗ (w (x (k))) and z (k) = w (x (k)) l (k).

D. UNPRODUCTIVE SIGNALING: IMPERFECTLY OBSERVABLE INVESTMENT

My final step is to consider the general case in which investment is unobservable. The
remaining difference from Section 1 is that employers now observe a noisy signal of in-
vestment rather than productivity. Specifically, θ ∈ Θ ⊆ R+ has conditional density
f (θ|x) twice differentiable in x, and full support for all x. As before, it satisfies the mono-
tone likelihood ratio property: ∂

∂θ

(
f(θ|xH )
f(θ|xL)

)
> 0 for all xH > xL. Otherwise, I adopt all the

assumptions from Section 1.
The equation for the belief externality, BE (z), remains very similar to Section 3. There

remain distinct productivity and rent transfer effects, with the change in the equilibrium
wage given signal realization θ̃ given by equation 61.

dw(θ̃|π)
d [1− T ′(z)]f(θ̃) =

∫
K

(
dx (k|π,T )
d [1− T ′ (z)]

) [ Productivity effect︷ ︸︸ ︷
Qx (x (k|π,T ) , k) f(θ̃|x(k|π,T )) (61)

+ [Q(x (k|π,T ) , k)−E(q|θ̃, π)]
(
∂f(θ̃|x)
∂x

∣∣∣∣
x=x(k|π,T )

)
︸ ︷︷ ︸

Rent transfer effect

]
dG (k)

However, there are important differences in the interpretation of these two effects.
First, the productivity effect may be small or even entirely absent if investment costs are
negatively correlated with innate ability. For example, an extreme possibility is that q =

Q (k) so that productivity is unaffected by investment. In this case, the productivity effect
is zero and investment returns must come entirely from unproductive signaling of one’s
ability. The private gain from investment is thus fully offset by negative impacts on the
wages of other workers. In this extreme case, the planner would set higher rather than
lower optimal taxes, given the same mechanical effect and fiscal externality.

A second possibility is that investment costs are positively rather than negatively re-
lated to ability, which is possible providing that investment also raises productivity. The
rent transfer effect then becomes less negative, and may even be positive, since a worker
who considers increasing her investment has higher innate ability than those who invest
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at that new level in equilibrium. In this case, the “unproductive” component of the return
reinforces rather than offsets the positive learning externality, and provides still further
motivation to lower marginal tax rates and encourage investment.
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G Proofs and Derivations
(For Online Publication)

Proof of Lemma 1. Firm beliefs about the distribution of productivity in the population
must be confirmed in equilibrium and identical across firms. Let π denote the equilibrium
set of beliefs. Firm j’s expectation of the worker’s productivity is E [q|θ, π,Aj = 1] ≥ 0.
Next, let ũ (wj) = u (wjl∗(wj)− T (wjl∗(wj)) , l∗(wj)) represent the utility that the worker
receives from accepting wage wj and supplying labor optimally.

Suppose that some firm j makes strictly positive expected profits given its wage offer
wj . It must then be the case that ũ (wj) ≥ ũ (wk) for all wages wk offered by other firms.
There are several cases to consider, each of which lead to a contradiction.

Case 1: ũ (wj) > ũ (wk) for some wk.

In this case, firm k initially earns zero expected profit, since no workers accept its
offer. However, it can offer a wage slightly higher thanwj . It then attracts the worker
with probability one and earns strictly positive profits. This is a profitable deviation.

Case 2: ũ (wj) = ũ (wk) for all wk, and P k,θ ≤ 0 for some k.

If any firm makes weakly negative profits, then the same deviation as Case 1 applies.

Case 3: ũ (wj) = ũ (wk) and P k,θ > 0 for all k.

Since the worker always accepts an offer, E [q|θ, π,Aj = 1] is bounded weakly below
E [q|θ, π] for at least one firm. This firm’s expected profit is bounded below PMAX.

PMAX = max
w

[E [q|θ, π]−w] l∗(w) s.t. u (wl∗(w)− T (wl∗(w)) , l∗(w)) ≥ u (T (0) , 0)

The assumptions on the worker’s utility function ensure that this yields finite labor
supply for any finite E [q|θ, π]. Since wj is greater than zero and E [q|θ, π] is finite,
PMAX is also bounded. Finally, this firm can strictly increase its profit by raising wj
slightly and attracting the worker with probability one.

Since every case in which a firm makes a strictly positive expected profit implies a
profitable deviation, and all firms can obtain zero expected profit by offering a zero wage,
it must be true that every firm makes zero expected profit. Finally, the wage, w, must be
the same at every firm who hires the worker with positive probability. We have therefore
established that [E [q|θ, π]−w] l∗(w) = 0, which is only satisfied if w = E [q|θ, π].
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Proof of Proposition 1. Assume – subject to verification – that investment is distributed log-
normally as hypothesized.

ln qi ∼ N
(

lnµq −
σ2
q

2 ,σ2
q

)
Given this, employers face a log-normal signal extraction problem. The expectation of
log-productivity is as follows.

E [ln q|θ] =
(

σ2
q

σ2
q + σ2

ξ

)
ln θ+

(
σ2
ξ

σ2
q + σ2

ξ

)(
lnµq −

σ2
q

2

)
=

(
σ2
q

σ2
q + σ2

ξ

)
ln q+

(
σ2
ξ

σ2
q + σ2

ξ

)(
lnµq −

σ2
q

2

)
+

(
σ2
q

σ2
q + σ2

ξ

)
ln ξ

Since employers offer workers their expected marginal product, the after-tax wage is:

ln [(1− τ )w] =
(

σ2
q

σ2
q + σ2

ξ

)
ln q+

(
σ2
ξ

σ2
q + σ2

ξ

)
lnµq +

(
σ2
q

σ2
q + σ2

ξ

)
ln ξ + ln (1− τ ) .

Exponentiating, we obtain the level of wages: w = qsµ1−s
q ξs, where s = σ2

q/(σ2
q + σ2

ξ ).
Given this wage, labor supply is l = (1− τ )εl wεl , which implies an after-tax income of:

(1− τ ) z = (1− τ )wl = (1− τ )1+εl w1+εl =
[
(1− τ ) qsµ1−s

q ξs
]1+εl .

Next, since q = Q (x) = xβ and costs are linear, expected utility is as follows.

(
(1− τ )1+εl µ

(1−s)(1+εl)
q

)
E
[
ξs(1+εl)

] xβs(1+εl)
1 + εl

− kx+ τz

Since I assume that βs (1 + εl) < 1, we can differentiate to find the agent’s choice of q.

q =

[
βs
(
(1− τ )1+εl µ

(1−s)(1+εl)
q

)
E
[
ξs(1+εl)

]
k

] β

1−βs(1+εl)

Then, since ln q is the sum of two normally distributed variables and a constant term, q is
itself log-normally distributed. Specifically, it has the following distribution.

ln q ∼ N
(

β

1− βs (1 + εl)
ln β +

β

1− βs (1 + εl)
ln s+ β (1 + εl)

1− βs (1 + εl)
ln (1− τ )

+ (1− s) β (1 + εl)

1− βs (1 + εl)
lnµq +

β

1− βs (1 + εl)
lnE

[
ξs(1+εl)

]
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− β

1− βs (1 + εl)

(
lnµk −

σ2
k

2

)
,
(

β

1− βs (1 + εl)

)2
σ2
k

)

Finally, we can obtain expressions for µq and σ2
q by matching coefficients.

σ2
q =

(
β

1− βs (1 + εl)

)2
σ2
k (62)

µq =

βs (1− τ )1+εl E
[
ξs(1+εl)

]
µk

exp
[(

1 + β

1− βs (1 + εl)

)
σ2
k

2

]
β

1−β(1+εl)

(63)

Equation 62 implicitly pins down σ2
q in terms of σ2

k, β, εl and σ2
ξ . It is independent of µk.

In turn, equation 63 characterizes µq as a function of the same set of parameters plus µk.
The elasticity of µq with respect to µk is −β/ [1− β (1 + εl)].

Proof of Lemma 2. There are two effects on q of increasing the retention rate 1− τ : a direct
effect, and an effect via average productivity. Combining these yields the total elasticity.

σq =
dq

d (1− τ ) ×
1− τ
q

=

[
∂q

∂ (1− τ ) +
∂q

∂µq

dµq
d (1− τ )

]
1− τ
q

=

[
β (1 + εl)

1− βs (1 + εl)
+ (1− s) β (1 + εl)

1− βs (1 + εl)

β (1 + εl)

1− β (1 + εl)

]
=

β (1 + εl)

1− β (1 + εl)

Similarly, we can derive the elasticity of income z to the retention rate.

σz =
dz

d (1− τ ) ×
1− τ
z

=

[
∂z

∂ (1− τ ) +
∂z

∂q

∂q

∂ (1− τ ) +
∂zi
∂µq

dµq
d (1− τ )

]
1− τ
z

= εl + (1 + εl)
β (1 + εl)

1− β (1 + εl)

=
εl + β (1 + εl)

1− β (1 + εl)

Proof of Proposition 2. The utility of a worker with noise realization ξ and cost k is:

v =

[
(1− τ ) qsµ1−s

q ξs
]1+εl

1 + εl
− kx+ τz
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where x is chosen optimally according to the following first-order condition.

k = βs
(
(1− τ )1+εl µ

(1−s)(1+εl)
q

)
E
[
ξs(1+εl)

]
xβs(1+εl)−1

Taking the expectation over ξ, the expected utility for an individual with cost k is:[
1− βs (1 + εl)

1 + εl

] (
(1− τ )1+εl µ

(1−s)(1+εl)
q

)
E
[
ξs(1+εl)

]
qs(1+εl) + τz

Then, substituting in the optimal choice of q, and weighting by the worker’s welfare
weight ψk, we get expected welfare in terms of µq and ξ.

Eξ [ψkvk,ξ|k] = ψk

[
1− βs (1 + εl)

1 + εl

](1− τ )
1+ εl+βs(1+εl)

1−βs(1+εl) µ
(1−s)(1+εl)

[
1+ βs(1+εl)

1−βs(1+εl)

]
q


×
(
βs

k

) βs(1+εl)
1−βs(1+εl)

{
E
[
ξs(1+εl)

]} 1
1−βs(1+εl) + ψkτz

= (1− τ )ψkzk
[

1− βs (1 + εl)

1 + εl

]
+ ψkτz

Finally, we can integrate over cost realizations to obtain average welfare.

E [ψkvk,ξ] = (1− τ )E [ψkzk]

[
1− βs (1 + εl)

1 + εl

]
+ τψz

Building on this result, there are three effects from raising the retention rate. First,
there is a fiscal externality from the change in average income, z.

FE = τψεz
z

1− τ

Second, welfare rises due to the externality via employer beliefs. Specifically, differentiat-
ing with respect to µq and aggregating over k, the gain in social welfare is as follows.

BE = (1− s)Ek (ψkzk) εq

Finally, there is a mechanical welfare loss due to the transfer from the average worker to
high-income workers:

ME = Ek (ψkzk)− ψz
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Summing the three effects we obtain an expression for the total welfare gain.

FE + ME + BE =
τ

1− τ εzz +Ek (ψkzk) [1 + (1− s) εq] z − ψz

Then setting this to zero yields the first-order condition shown in the proposition.

Proof of Proposition 3. The objective of the social planner is to maximize welfare W (T )

subject to the four constraints of Problem 5. This problem is restated here for convenience.

max
T

W (T ) =
∫
K
W
(
V (k,T )

)
dG (k)

where:
V (k,T ) =

∫
Θ
(v (θ|π,T )− kx (k, π,T )) f (θ, q (k|π,T )) dθ

subject to:

x (k|π,T ) ∈ argmax
x̃∈R+

∫
Θ
v (θ|π,T ) f (θ|Q (x̃)) dθ− kx̃

l (θ|π,T ) ∈ argmax
l̃∈R+

u
(
w (θ|π) l̃− T

(
w (θ|π) l̃

)
, l̃
)

w (θ|π) =
∫
K q (k|π,T ) f (θ|q (k|π,T )) dG (k)∫

K f (θ|q (k|π,T )) dG (k)

R =
∫

Θ
T (z (θ|π,T )) f (θ) dθ

For ease of discussion, it will also be helpful to recall that v (θ|π,T ) can be expanded and
written as a function of a worker’s wage, labor supply and tax liability.

v (θ|π,T ) = u (w (θ|π) l (θ|π,T )− T (w (θ|π) l (θ|π,T )) , l (θ|π,T )) (64)

A perturbation to T as described has three effects that I will consider in turn. First, there
is a welfare loss (WL) from taking money from individuals with income higher than z.

WL = −dτdz
{∫ θ

θ(z|π,T )
uc(θ)

∫
K
ψ(k)dG(k|θ)f (θ) dθ

}
(65)

Since the revenue raised is returned to all individuals equally via an increase in the inter-
cept of the tax schedule, it is worth λ per dollar in terms of social welfare, where:

λ =
∫

Θ
uc(θ)

∫
K
ψ(k)dG(k|θ)f (θ) dθ (66)
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Multiplying by the amount of revenue raised, the welfare gain (WG) from this transfer is:

WG = dτdz

{∫ θ

θ(z|π,T )
f (θ) dθ

}
λ. (67)

Summing WL and WG, then dividing by λ yields the mechanical gain in welfare, ME (z).
The second effect to consider is the fiscal externality, FE (z), which arises when indi-

viduals re-optimize. The value of the fiscal externality can be obtained by differentiating
the resource constraint, yielding the impact on government revenue from re-optimization.

Since the focal selection (E (T ) ,T ) is assumed to be locally continuously differen-
tiable with respect to T , l (θ|π,T ) and x (k|π,T ) respond continuously to the perturbation.
Next, since x (k|π,T ) responds continuously and Q is differentiable, so does q (k|π,T ) =
Q (x (k|π,T )). Finally, since f (θ) =

∫
K f (θ|q (k|π,T )) dG(k) is continuous in q (k|π,T ),

f (θ) responds continuously. In turn, this implies that w (θ|π) responds continuously. The
change in income given a signal realization θ can therefore be written as follows.

− dz(θ|π,T )
d [1− T ′ (z)] = −w (θ|π,T ) dl (θ|π,T )

d [1− T ′ (z)] − l (θ|π,T ) dw (θ|π,T )
d [1− T ′ (z)]

These results allow the fiscal externality to be written as a combination of the effects
of changes in z(θ|π,T ) and f(θ), capturing the effect on government revenue from both
investment and labor supply decisions. After dividing through by λ, the total fiscal exter-
nality is as follows.

FE (z) = −dτdz
∫

Θ

{
T ′(z(θ̃|π))

(
dz(θ̃|π,T )
d [1− T ′ (z)]

)
f(θ̃)− T (z(θ̃|π,T )) df(θ̃)

d [1− T ′ (z)]

}
dθ̃

The final effect of taxation is the effect on individual utility of changing wages in re-
sponse to shifts in the distribution of productivity (BE). Since individuals take the wage
paid given any signal realization as fixed, they ignore this effect. Differentiating the belief
consistency constraint, the effect of a rise in individual k’s productivity on the wage of a
worker with signal realization θ is as follows.

dw(θ|π)
dq (k|π,T ) =

f(θ, q(k|π,T ))
f(θ)

+


∂f(θ,q)
∂q

∣∣∣
q=q(k|π,T )
f(θ)

 [q (k|π,T )−E(q|θ, π)]

Applying the envelope theorem and again dividing by λ, the effect of this wage change
on social welfare is simply scaled by the affected worker’s labor supply, retention rate and
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the average welfare weight of an individual with signal realization θ.

dw(θ̃|π)
dq (k|π,T )ψz(z(θ̃|π,T ))

[
1− T ′(z(θ̃|π,T ))

]
l(θ̃|π)

To obtain the total belief externality shown in the main text, we then integrate over the
distributions of θ and k.

These three effects jointly capture the total change in welfare from a perturbation, since
the effects of individuals’ re-optimization on their own welfare are second-order. Thus,
given any continuous selection, if FE+BE+ME 6= 0, welfare increases in response either
to an arbitrarily small positive perturbation or an equivalent negative perturbation. Ex-
cept at a discontinuity at which ME, FE and BE are not defined, a necessary condition for
an optimum is therefore that the sum of the three effects is zero.

Proof of Lemma 3. Firm beliefs about the distribution of productivity in the population
must be confirmed in equilibrium and identical across firms. Let π denote the equilibrium
set of beliefs. Firm j’s expectation of the worker’s productivity is E [q|θ, π,Aj = 1] ≥ 0.
Finally, let ũ (Cj) = u (zj − T (zj) , lj) represent the utility that the worker receives from
accepting offer Cj .

Suppose that some firm j makes strictly positive expected profits given its contract
offer Cj . It must then be the case that ũ (Cj) ≥ ũ (Ck) for all contracts Ck offered by other
firms. There are several cases to consider, each of which will lead to a contradiction.

Case 1: ũ (Cj) > ũ (Ck) for some Ck.

Firm k initially earns zero expected profit, since not workers accept its offer. How-
ever, it can replicate Cj but slightly reduce lj . By doing so, it attracts the worker with
probability one and earns strictly positive profits. This is a profitable deviation.

Case 2: ũ (Cj) = ũ (Ck) for all Ck, and P k,θ ≤ 0 for some k.

If any firm makes weakly negative profits, then the same deviation as Case 1 applies.

Case 3: ũ (Cj) = ũ (Ck) and P k,θ > 0 for all k.

Since the worker always accepts an offer, E [q|θ, π,Cj ] is bounded weakly below
E [q|θ, π] for at least one firm. This firm’s expected profit is bounded below PMAX.

PMAX = max
l,z

E [q|θ, π] l− z s.t. u (z − T (z) , l) ≥ u (T (0) , 0)
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The assumptions on the worker’s utility function ensure that this yields finite labor
supply for any finite E [q|θ, π]. Since zj is restricted to be greater than zero and
E [q|θ, π] is finite, PMAX is also bounded. Finally, this firm can strictly increase its
profit by reducing lj slightly and attracting the worker with probability one.

Since every case in which a firm makes a strictly positive expected profit implies a
profitable deviation, and all firms can obtain at least zero expected profit by offering a
contract with zj = 0, it must be true that every firm makes zero expected profit.

Next consider two cases for the worker’s effective wage and labor supply.

Case A: One firm hires the worker with probability one.

If one firm j always hires the worker in equilibrium, zero profit implies directly that
the worker’s wage is her expected marginal product.

wj =
zj
lj

= E [q|θ, π]

Next, suppose that Cj specifies a labor supply lj /∈ L∗ where:

L∗ = argmax
l̃j

u
(
E [q|θ, π] l̃j − T

(
E [q|θ, π] l̃j

)
, l̃j
)

.

Some other firm k could offer a contract with the same implied wage as Cj but with
lk ∈ L∗. Since wj = E [q|θ, π], this produces zero profits but the worker’s utility is
strictly higher. Firm k can now increase lk slightly, thereby attracting the worker with
probability one and earning strictly positive profit. Thus, it must be that lj ∈ L∗.

Case B: Multiple firms hire the worker with positive probability.

Since each firm earns zero profit, a similar wage condition must hold for firms who
hire a worker with positive probability.

wj =
zj
lj

= E [q|θ, π,Aj = 1] ∀j

Moreover, similar logic to above implies that lj ∈ L∗j where:

L∗j = argmax
l̃j

u
(
E [q|θ, π,Aj = 1] l̃j − T

(
E [q|θ, π,Aj = 1] l̃j

)
, l̃j
)

.

Otherwise, firm j could offer a contract with the same implied wage but with lj ∈ L∗j ,
so that ũ (Cj) is higher than before. It could then slightly increase lj . The worker
would always accept the firm’s offer and it earns strictly positive expected profit.
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Next, suppose E [q|θ, π,Aj = 1] > E [q|θ, π,Ak = 1] for some firms j and k. For at
least one pair, it must be that E [q|θ, π,Aj = 1] > E [q|θ, π] > E [q|θ, π,Ak = 1]. Let
l∗j ∈ L∗j be the labor supply offered by firm j. By the definition of L∗j we know that:

u
(
wjl
∗
j − T

(
wjl
∗
j

)
, l∗j
)
≥ u (wjl

∗
k − T (wjl

∗
k) , l∗k) .

Suppose now that u (wjl∗k − T (wjl∗k) , l∗k) ≤ u (wkl
∗
k − T (wkl

∗
k) , l∗k). Then firm j can

alter its offer to zj = wkl
∗
k < wjl

∗
k and set lj below but arbitrarily close to lk. Firm

j then attracts the worker with probability one. Since E [q|θ, π] > E [q|θ, π,Ak = 1],
firm j can make strictly positive profit with this strategy.

Alternatively, suppose that u(wjl∗k − T (wjl∗k), l∗k) > u(wkl
∗
k − T (wkl∗k), l∗k), which im-

plies that u(wjl∗j − T (wjl∗j ), l∗j ) > u(wkl
∗
k − T (wkl∗k), l∗k). This is a contradiction since

we assumed that both firms attract the worker with positive probability. which re-
quires that u(wjl∗j − T (wjl∗j ), l∗j ) = u (wkl

∗
k − T (wkl

∗
k) , l∗k).

In conclusion, firms must earn zero expected profit, and E [q|θ, π,Aj = 1] = E [q|θ, π].

Proof of Proposition 4. Assume – subject to verification – that formal education and unob-
servable investment are jointly log-normally distributed.[

ln x
ln e

]
∼ N

([
lnµx − (1− ρi)2 σ2

x
2

lnµe − (1− ρi)2 σ2
e

2

]
,
[

σ2
x ρiσxσe

ρiσxσe σ2
e

])

where: σ2
x and σ2

e are the equilibrium variances of x and e, and ρi is the correlation between
the two investments.

This implies the following conditional distribution of x.

ln x ∼ N
(

lnµx − (1− ρi)2 σ
2
x

2 + ρi
σx
σe

(
ln e− lnµe + (1− ρi)2 σ

2
e

2

)
, (1− ρi)2

σ2
x

)
Given this, employers face a log-normal signal extraction problem. Conditional on ob-
servable investment level e and signal θ, the expectation of log-investment is as follows.

E (ln x|θ, e) = s̃ ln x+ (1− s̃)
[
lnµx + ρi

σx
σe

(
ln e− lnµe + (1− ρi)2 σ

2
e

2

)]
− 1

2
(1− ρi)2

σ2
ξσ

2
x

(1− ρi)2
σ2
x + σ2

ξ

)
+ s̃ ln ξ

where s̃ =
(1−ρi)2σ2

x+σ
2
ξ

(1−ρi)2σ2
x+σ2

ξ

is the signal-to-noise ratio for θ conditional on e.
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Next, we can calculate a worker’s wage, which is equal to her marginal product. Not-
ing that E (ln q) = βα ln e+ β (1− α)E (ln x), we have:

lnw = κe ln e+ κx ln x+ ln µ̃x

where:

κe = βα+ β (1− α) (1− s̃) ρi
σx
σe

κx = β (1− α) s̃

ln µ̃x = β (1− α) (1− s̃)
[
lnµx − ρi

σx
σe

(
lnµe − (1− ρi)2 σ

2
e

2

)]
Exponentiating, the level of after-tax wages is: w = (1− τ ) eκexκxµ̃xξκx and labor supply
is l = (1− τ )εl wεl . After-tax income is therefore (1− τ ) z = [(1− τ ) eκexκxµ̃xξκx ]1+εl .
Finally, expected utility is:

(1− τ )1+εl µ̃
(1+εl)
x E

[
ξκe(1+εl)

] eκe(1+εl)xκx(1+εl)
1 + εl

− kxx− ke (1− τe) e+ τz − τekee.

Assuming that κx (1 + εl) < 1 and κe (1 + εl) < 1 so that individual decisions are
characterized by their first-order conditions, the optimal choices are as follows.

x =

(
κx (1− τ )1+εl µ̃

(1+εl)
x eκe(1+εl)E

[
ξκx(1+εl)

]
kx

) 1
1−κx(1+εl)

e =

(
κe (1− τ )1+εl µ̃

(1+εl)
x xκx(1+εl)E

[
ξκx(1+εl)

]
ke (1− τe)

) 1
1−κe(1+εl)

Solving this pair of simultaneous equations yields explicit solutions.

ln x =
(1 + εl) [ln (1− τ ) + ln µ̃x] + [1− κe (1 + εl)] ln κx + κe (1 + εl) ln κe +E

[
ξκx(1+εl)

]
1− (κx + κe) (1 + εl)

− [1− κe (1 + εl)] ln kx + κe (1 + εl) ln ke
1− (κx + κe) (1 + εl)

− κe (1 + εl) ln (1− τe)
1− (κx + κe) (1 + εl)

(68)

ln e =
(1 + εl) [ln (1− τ ) + ln µ̃x] + κx (1 + εl) ln κx + [1− κx (1 + εl)] ln κe +E

[
ξκx(1+εl)

]
1− (κx + κe) (1 + εl)

− κx (1 + εl) ln kx + [1− κx (1 + εl)] ln ke
1− (κx + κe) (1 + εl)

− [1− κx (1 + εl)] ln (1− τe)
1− (κx + κe) (1 + εl)

(69)

41



These two equations can be written in matrix form:[
ln x
ln e

]
= c+B

[
ln kx
ln ke

]

where c is a 2× 1 vector of constants, and B is a 2× 2 matrix of constants. Since kx and ke

are jointly log-normal, so are x and e. This proves the first part of the proposition.
Using the equations for ln x and ln e above, it is straightfoward to derive the elasticities

of x and e with respect to 1− τ and 1− τe.

εxτ =
1 + εl

1− (κx + κe) (1 + εl)
εeτ =

1 + εl
1− (κx + κe) (1 + εl)

εxτe = −
κe (1 + εl)

1− (κx + κe) (1 + εl)
εeτe = −

1− κx (1 + εl)

1− (κx + κe) (1 + εl)

Using the fact that ln q = βα ln e + β (1− α) ln x, we can then derive the elasticities of
overall productivity with respect to 1− τ and 1− τe.

εqτ =
β (1 + ε)

1− (κx + κe) (1 + εl)
εqτe = −

βα [1− κx (1 + εl)] + β (1− α) κe (1 + εl)

1− (κx + κe) (1 + εl)

In turn, the elasticities of income with respect to 1− τ and 1− τe are as follows.

εzτ = εl + (1 + εl)
β (1 + ε)

1− (κx + κe) (1 + εl)

εzτe = − (1 + εl)
βα [1− κx (1 + εl)] + β (1− α) κe (1 + εl)

1− (κx + κe) (1 + εl)

With the elasticities in hand, we can derive a first-order condition for the optimal tax
and education subsidy. There are again three first-order effects of a change the income tax.
First, there is the fiscal externality, which takes into account the effect of re-optimization
on both government revenue and expenditure on the education subsidy.

FE (τ ) = τψεzτ
z

1− τ − τe
dkee

d (1− τ )
=

τ

1− τ ψεzτz −
τe

1− τ ψεeτkee

Second, there is the belief externality, which is similar to before.

BE (τ ) = Ei

[
ψi
∂vi
∂µ̃x

∂µ̃x
∂µx

εxτ
µx

1− τ

]
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= β (1− α) (1− s̃)E [ψke,kxzke,kx ] εx

Finally, there is the mechanical effect of the transfer.

ME (τ ) = E [ψke,kxzke,kx ]− ψz

The three effects of a change in the education subsidy, τe, are similar. First, there is the
fiscal externality.

FE (τe) =
τ

1− τe
ψεzτez −

τe
1− τe

ψεeτekee

Then there is the belief externality.

BE (τe) = β (1− α) (1− s̃)E [ψke,kxzke,kx ] εxτe

Finally, there is the mechanical effect.

ME (τe) = ψkee−E [ψke,kxkeeke,kx ]

Setting the sum of the three effects equal to zero for each instrument, and using the
result that keeke,kx = κe

(
1−τ
1−τe

)
zke,kx , the first-order conditions for the optimal tax and

education subsidy are as follows.

τ

1− τ = κe

(
τe

1− τe

)(
εeτ
εzτ

)
+

1− γ
εzτ

−
γ (1− s) εqτ

εzτ
(70)

τe
1− τe

=
1
κe

(
τ

1− τ

)(
εzτe
εeτe

)
+

1− γ
εeτe

−
γ (1− s) εqτ

εeτe
(71)

where:
s =

βαεeτ + β (1− α) s̃εxτ
βαεeτ + β (1− α) εxτ

= 1− β (1− α) (1− s̃) εxτ
εqτ

.

The statistic s is the fraction of the social return to higher productivity that workers fails
to capture due to employers’ imperfect information about x, when they re-optimize in
response to changes in τ .

Solving the simultaneous equations above yields the first-order conditions for the op-
timal tax and education subsidy shown in the proposition.

τ

1− τ = Mτ

[
1− γ
εzτ

−
γ (1− s) εqτ

εzτ

]
(72)
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τe
1− τe

= Mτe

[
1− γ
εzτ

−
γ (1− s) εqτ

εzτ

]
(73)

The constants are the following functions of the elasticities.

Mτ =
κe

(
εeτ
εeτe

)
+ 1

1−
(
εzτe
εeτe

) (
εeτ
εzτ

) Mτe =

1
κe

(
εzτe
εeτe

)
+ εzτ

εeτe

1−
(
εzτe
εeτe

) (
εeτ
εzτ

)

Proof of Proposition 5. See Stantcheva (2014).

Proof of Proposition 6. I begin by establishing that there is an equilibrium with zero in-
vestment. The stated assumptions ensure that w (θ|π) is strictly increasing in π, that
w (θ|0) = 0 for all θ and that w (θ|1) = ω for all θ. This guarantees that vq (0|τ ) = vu (0|τ )
and vq (1|τ ) = vu (1|τ ), which in turn implies that G (β (0|τ )) = 0 and G (β (1|τ )) = 0.
Thus, there is a solution with no investment and no solution in which all agents invest.

Finally, if G (β (π|τ )) > π for some π∗ then the continuity of φ (θ) and G combined
with the fact that G (β (1|τ )) = 0 implies that G (β (π̂|τ )) = π̂ for some π̂ > π∗. There are
therefore at least two solutions to equilibrium condition 46.

Proof of Proposition 7. Social welfare is given by:

πvq (π) + (1− π) vu (π)−
∫ vq(π)−vu(π)

0
kdG (k) .

where:

vq (π|τ ) =
∫ 1

0
v (θ|π) dFq (θ)− k

vu (π|τ ) =
∫ 1

0
v (θ|π) dFu (θ) .

By differentiating the equation for the worker’s wage, it can be shown that the wage is
increasing in π.

∂w (θ|π)
∂π

= ω×
fu (θ) fq (θ)

[πfq (θ) + (1− π) fu (θ)]2
> 0
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In turn, this means that v (θ|π, τ ) = u ((1− τ )w (θ|π) + τπw) is increasing in π. Thus,
holding investment decisions and τ constant, welfare increases with π. The accompany-
ing change in individual investment decisions can only make those marginal individuals
better off. Thus, welfare is higher for all workers.

Next, let π∗ (τ ) be the investment rate in the planner’s preferred equilibrium for each
tax rate. The proof that π∗ (τ ) rises as τ falls is simple. First, if π∗ (τ ) = 0, it cannot fall.
Alternatively, suppose that π∗ (τ0) > 0. Since lowering τ from τ0 to τ1 raises G(β(π|τ ))
for any π, it must be true that G(β(π∗ (τ0) |τ1)) > π∗ (τ0). Since G(β(π|τ )) is continuous
and G(β(1|τ )) = 0, there must be some higher investment rate π̂ such that G(β(π̂|τ1)) =

π̂ > π∗ (τ0). Since the equilibrium with the highest investment rate Pareto dominates all
others, the planner’s preferred equilibrium now features a higher investment rate.

Proof of Proposition 8. Just as in Sections 2 and 3, there are three effects from a fall in τ .
First, there is a mechanical effect. For a worker with signal θ, this is as follows.

∂v (θ|π)
∂ (1− τ ) = u′

[
(1− τ )ω πfq (θ)

πfq (θ) + (1− π) fu (θ)
+ τπω

] [
πfq (θ)

πfq (θ) + (1− π) fu (θ)
− π
]
ω

= u′θπ (1− π)ω
[

fq (θ)− fu (θ)
πfq (θ) + (1− π) fu (θ)

]
Aggregating up, we obtain the total mechanical effect on social welfare.

ME = ωπ (1− π)
∫ 1

0
u′θ [fq (θ)− fu (θ)] dθ = −ωπvτ

Next, there is a fiscal externality. Assuming π† (τ ) is locally continuous, this is given by:

FE = τ
dπ

d (1− τ )ω
∫ 1

0
u′θ [πfq (θ) + (1− π) fu (θ)] dθ =

τ

1− τ πεzωu
′
θ

Finally, there is the externality via employer beliefs, which raises wages for all workers but
is not taken into account when workers optimize. Using the continuity of π† (τ ) again:

BE = (1− τ ) dπ

d (1− τ )

∫ 1

0
u′θ

[
∂w (θ|π)
∂π

]
[πfq (θ) + (1− π) fu (θ)] dθ

= εzπω
∫ 1

0
u′θ

[
fu (θ) fq (θ)

πfq (θ) + (1− π) fu (θ)

]
dθ = εzπwz
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Adding the three effects and re-arranging yields the following first-order condition.

τ

1− τ =
(1− π)

∫ 1
0 u
′
θ [fu (θ)− fq (θ)] dθ− εz

∫ 1
0 u
′
θ

[
fu(θ)fq(θ)

πfq(θ)+(1−π)fu(θ)

]
dθ

εz
∫ 1

0 u
′
θ [πfq (θ) + (1− π) fu (θ)] dθ

=
vτ − εzwz

εz

Proof of Proposition 9. Fixing a value of TA→D, the proof that condition 48 must hold at the
optimum is analogous to the proof of Proposition 8. A similar perturbation argument
can be used to establish that condition 49 must hold. An increase in TA→D leads to the
following gain in welfare for type A and D individuals:

−∆A =
1
λA

∫ 1

0
u′A,θdF (θ) ∆D =

1
λD

∫ 1

0
u′D,θdF (θ)

The welfare gain, λD∆D − λA∆A, must be zero at interior optima if π†(T ) is locally contin-
uous, implying condition 49.

Proof of Proposition 10. Assume – subject to verification – that productivity and investment
are log-normally distributed.

q ∼ LN

(
lnµq −

σ2
q

2 ,σ2
q

)
Next, suppose the relationship between productivity and investment can be written as:

ln q = lnA+B ln x

where A and B are scalars that will be found by matching coefficients. This allows the
signal to be written as a linear combination of productivity q and noise ξ.

ln θ =
(

1
B

)
ln q−

(
1
B

)
lnA+ ln ξ

For convenience, define ln ξ̃ = B ln ξ and let ln θ̃ be the following linear transformation of
the signal.

ln θ̃ = B ln θ+ lnA = ln q+B ln ξ = ln q+ ln ξ̃
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The expected log-marginal product of an individual follows from the fact that the em-
ployer faces a standard normal signal extraction problem:

E
[
ln q|θ̃

]
= s ln θ̃+ (1− s)

(
lnµq −

σ2
q

2

)
where s = σ2

q/(σ2
q + σ2

ξ̃
) = σ2

x/(σ2
x + σ2

ξ ). A worker’s expected level of productivity is
therefore a geometric weighted average of A, x, ξ and µq.

w = θ̃sµ1−s
q = AsxsBξsBµ1−s

q

Optimal labor supply is l = (1− τ )εl wεl , which means that after tax income is:

(1− τ ) z = (1− τ )1+εl w1+εl

= (1− τ )1+εl
[
AsxsBξsBµ1−s

q

]1+εl
.

In turn, this implies a value of expected utility for any investment level.

v =
[
As (1− τ ) µ1−s

q

]1+εl E [ξsB(1+εl)
] xsB(1+εl)

1 + εl
− kx+ τz

Assuming again that βs(1 + εl) < 1, it will also turn out to be true that sB(1 + εl) < 1.
This in turn ensures that the worker’s optimal choice of ln x is as follows.

ln x =
1

1− sB (1 + εl)

[
lnn+ ln (sB) + (1 + εl) ln (1− τ ) + (1− s) (1 + εl) lnµq

+ lnE
[
ξs(1+εl)

]
+ s (1 + εl) lnA

]
Next, using the fact that ln q = α lnn+ β (1− α) ln x, and matching coefficients, B is:

B =
α+ β (1− α)
1 + sα (1 + εl)

.

This can in turn be used to solve for lnA in terms of x.

lnA = α lnn− α− β (1− α) sα (1 + εl)

1 + sα (1 + εl)
ln x
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A can then be eliminated to yield a new expression for ln x.

ln x =
1 + sα (1 + εl)

1− sβ (1− α) (1 + εl)
ln (n) +

1
1− sβ (1− α) (1 + εl)

[
ln s+ ln

(
α+ β (1− α)
1 + sα (1 + εl)

)
+ (1 + εl) ln (1− τ ) + (1− s) (1 + εl) lnµq + lnE

[
ξs(1+εl)

]]
Finally, since x inherits the log-normality of n, and ln q = α lnn+ (1− α) β ln x, q is also
log-normal. This means that the values of µq and σ2

q can be found by matching coefficients.

σ2
q =

[
α+ β (1− α)

1− βs (1− α) (1 + εl)

]2
σ2
n

lnµq =
[

α+ β (1− α)
1− (1− α) β (1 + εl)

]
lnn+

[
β (1− α)

1− (1− α) β (1 + εl)

]
×
{

ln s+ ln
[
α+ β (1− α)
1 + sα (1 + εl)

]
+ (1 + εl) ln (1− τ ) + lnE

[
ξ̃s(1+εl)

]}
+
σ2
n

2

[
α+ β (1− α)

1− s (1− α) β (1 + εl)

] [
α+ β (1− α)

1− (1− α) β (1 + εl)

]
The elasticity of productivity follows directly.

d lnµq
d ln (1− τ ) =

(
β (1− α) (1 + εl)

1− β (1− α) (1 + εl)

)
Finally, the elasticity of income can be found as follows.

d ln z
d ln (1− τ ) =

∂z

∂ (1− τ ) +
∂ ln z
∂ ln q

∂ ln q
∂ ln (1− τ ) +

∂ ln z
∂ lnµq

d lnµq
d ln (1− τ )

= εl + (1 + εl)

[
β (1− α) (1 + εl)

1− β (1− α) (1 + εl)
s+

β (1− α) (1 + εl)

1− β (1− α) (1 + εl)
(1− s)

]
=
εl + (1 + εl) β (1− α)
1− β (1− α) (1 + εl)

Proof of Proposition 11. Using the results from Proposition 10, a worker’s expected utility,
vn, can be derived in the same way as in Proposition 2.

vn = n
s(1+εl)[α+β(1−α)]
1−βs(1−α)(1+εl)

[
(1− τ )(1+εl) µ(1−s)(1+εl)q E

(
εs(1+εl)

)] 1
1−βs(1−α)(1+εl) [sB]

βs(1+εl)(1−α)
1−βs(1−α)(1+εl)

×
[

1− (1 + εl) sB

1 + εl

]
+ τz
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where B = α+β(1−α)
1+sα(1+εl)

. The expected after-tax income for an individual with investment
cost n can be derived similarly.

(1− τ ) zn = n
s(1+εl)[α+β(1−α)]
1−βs(1−α)(1+εl)

[
(1− τ ) µ(1−s)q

] 1+εl
1−βs(1−α)(1+εl)

×E
[
εs(1+εl)

] 1
1−βs(1−α)(1+εl) [sB]

βs(1+εl)(1−α)
1−βs(1−α)(1+εl)

The welfare of workers with ability n can then be re-written in terms of income, and
weighted by ψn.

ψnvn = (1− τ )ψnzn
[

1− (1 + εl) sB

1 + εl

]
+ τψnz

Differentiating ψnvn with respect to 1 − τ , we obtain the effects on welfare of both the
mechanical transfer and the distortion from the unproductive component of investment,
which is built into vn. Then taking the expectation over ability types, n, we obtain:

MEU = E [znψn]

[
1

1 + sα (1 + εl)

]
− ψz

Next, we can calculate the belief externality. This is again captured by the effect via µq. Us-
ing the elasticities from Proposition 10 and the expression for vn, the effect on the welfare
of a worker with ability n is:

(1 + εl) (1− s)
1− βs (1− α) (1 + εl)

vn − τz
µq

β (1− α) (1 + εl)

1− β (1− α) (1 + εl)

µq
1− τ .

Weighting by ψn, using the expression for vn and taking the expectation over ability types,
this gives us the total belief externality.

BE = (1− s)E [znψn]

[
1

1 + sα (1 + εl)

]
β (1− α) (1 + εl)

1− β (1− α) (1 + εl)

Finally, the fiscal externality follows from the elasticity of income.

FE = τ

[
εl + (1 + εl) β (1− α)
1− β (1− α) (1 + εl)

]
z

1− τ

By the same argument as Proposition 2, the sum of BE, MEU and FE must be zero for τ to
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be optimal, which yields the result.

τ

1− τ =
1−En

(
zn
z
ψn
ψ

) [
1

1+sα(1+εl)

] [
1 + (1− s)

(
(1+εl)β(1−α)

1−β(1−α)(1+εl)

)]
εl+(1+εl)β(1−α)
1−β(1−α)(1+εl)
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H Empirical Evidence
(For Online Publication)

A. CALCULATING THE WEDGE BETWEEN PRIVATE AND SOCIAL RETURNS

In this appendix, I show how to use an estimate of the speed of employer learning to
calculate the implied wedge between private and social returns. To do so, I build on the
empirical model developed by Lange (2007), which fits the empirical evidence patterns
well. The procedure outlined here is how the statistics in Table 1 were calculated.

Following Lange (2007), I assume that the experience profile of log productivity is
independent of other factors. An individual’s productivity can be written as:

ln qi,t = χ̃ (ei,mi, ηi, ai) + H̃ (ti) (74)

where: ei is information available to both employers and the researcher (e.g., schooling);
mi is available to employers but not researchers (e.g., job interview performance); ai is
available to the researcher only (e.g., the skills measured by the AFQT); ηi captures factors
that are initially hidden from both the researcher and employers; and ti is experience.

Further assuming that χ̃ is linear (and suppressing the subscript for individual i from
now on) allows us to write:

ln qt = re+ α1m+ ρa+ η+ H̃ (t) (75)

Then letting (e, q, a, η) be jointly normally distributed, we can write a and η as:7

a = E [a | e,m] + v = γ1m+ γ2e+ v

η = E [η | e,m] + u = α2e+ u

In turn, this allows us to express log productivity as a linear function of the information
available to employers at experience level t = 0:

ln q = (r+ ργ2 + α2) e+ (α1 + ργ1)m+ (ρv+ u) + H̃ (t)

= E (χ̃ | e,m) + (ρv+ u) + H̃ (t)

Still following Lange (2007), the process of employer learning is modeled as follows.
After each period, a noisy measure of θt of χ̃ becomes available to all employers.

θt = χ̃+ εt (76)

7As in Lange (2007), we can normalize the coefficient vector and suppress m from the equation for η.
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The noise in this signal, ετ , is i.i.d. normal with variance σ2
ε . It is uncorrelated with all the

other variables. Thus, after t years of experience, a t-dimensional vector of measurements
θt = (θ0, θ1, . . . , θt−1) has become available to employers.

Given this employer learning process, an employer’s rational belief about a worker’s
productivity after after t years of experience is characterized by the posterior distribution:

µt = (1− λt)E (χ̃ | e,m) + λt

(
1
t

t−1
∑̃
t=0

θt̃

)
σ2
t =

σ2
0σ

2
ε

tσ2
0 + σ2

ε

(77)

where σ2
0 is the variance of χ̃ conditional on (e,m) – i.e., the variance of the initial expec-

tation error (λv+ e).
In equation 77, the weight λt is given by the following equation.

λt =
tK

1 + (t− 1)K (78)

Here, K1 = σ2
0/(σ2

0 + σ2
ε) is the speed of employer learning, which measures the informa-

tion content of initial information relative to subsequent measurements. From here, it is
straightforward to show that a worker’s competitive wage is given by:

lnW
(
e,m, θt

)
= (1− λt)E (χ̃ | s,m) + λt

(
1
t

t−1
∑̃
t=0

yt̃

)
+H (t) (79)

where H (t) = H̃ (t) + 1
2σ

2
t .

Lange (2007) shows how to use this result to estimate the speed of employer learning,
K. However, our focus here is different. Given an estimate of K, I will examine the
implications for the discounted return to an increase in a worker’s productivity.

An individual’s expected lifetime earnings until retirement in period T is:

T

∑
t=0

δtE
[
W
(
e,m, θt

)
| s,m, z, η

]
where δ is the discount rate. Combining this equation with the wage given by equation 79
we obtain the following expression for the present value of earnings:

T

∑
t=0

δtE

[
exp

(
(1− λt)E (χ̃ | s,m) + λt

(
1
t

t−1
∑̃
t=0

θt̃

)
+H (t) | s,m, z, η

)]

Finally, we can ask what the return is to an increase in χ̃ that is not initially rewarded by
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employers.8. This private return is given by:

T

∑
t=0

δtλtE
[
W
(
e,m, θt

)
| s,m, z, η

]
. (80)

By contrast, the social return is simply given:

T

∑
t=0

δtE
[
W
(
e,m, θt

)
| s,m, z, η

]
.

The share of the social return to higher χ̃ that is captured by workers is simply given by
the ratio of the two expressions.

s =
∑T
t=0 δ

tλtE [W (e,m, θt) | s,m, z, η]
∑T
t=0 δ

tE [W (e,m, θt) | s,m, z, η]
(81)

Equation 81 is equivalent to equation 19, but now shows that three empirical objects
are required to estimate of the share of the return to investment, s, that is captured by
workers. First, we need an estimate of the speed of employer learning, which implies λt.
Table 1 provides four such estimates. Second, we need the lifecycle profile of expected
wages, which I take from Lagakos, Moll, Porzio, Qian and Schoellman (2018). Finally, we
need a discount rate.

Figure H1 shows how the pieces fit together. It displays the impact of higher unobserv-
able productivity on wages at each level of potential experience, assuming that K = 0.259
and δ = 0.95. The social impact is normalized to one at zero years of experience. It then
rises as wages increase, but becomes discounted heavily in later periods. The private re-
turn starts at zero, but then converges to the social return in later years as a worker’s skill
becomes evident. The ratio of the blue shaded area in panel (b) to the total shaded area is
the fraction of the discounted social return that is not captured by workers.

Each estimate in Table 1 was calculated in this way for different values of the discount
rate and the speed of employer learning. All of the estimates imply a meaningful distor-
tion of the returns to investment. As Figure H1 shows, this is due to a relatively large gap
between private and social returns over the first decade of a worker’s career.

B. HETEROGENEITY IN EMPLOYER LEARNING BY PRODUCTIVITY LEVEL

In the next part of this appendix, I build on Arcidiacono, Bayer and Hizmo (2010) to
provide more direct evidence on how learning varies over the productivity distribution.

8Specifically, this implies that E (χ̃ | s,m) is unaffected. This calculation is supported by Lange’s (2007)
results, which indicate that there is no initial return to higher ability as measured by the AFQT.
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FIGURE H1: PRIVATE AND SOCIAL IMPACT OF HIGHER PRODUCTIVITY
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(b) Discounted (δ = 0.95)
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Figure notes. This figure shows the impact of a higher level of initially unobservable productivity on wages
at each level of potential experience. The initial social impact is normalized to one. The social impact
then rises as wages increase, but becomes discounted heavily in later periods. The private return to higher
productivity is initially zero, but converges to the social return in later years as the worker’s skill becomes
evident. Panel (a) shows the undiscounted impacts, while panel (b) shows the discounted impacts. The
ratio of the blue shaded area to the total shaded area in panel (b) is the fraction of the discounted social
return that is not captured by workers. The speed of learning is set to 0.259 as estimated by Lange (2007),
and the lifecycle wage profile is taken from Lagakos et al (2018).
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Taking AFQT as a proxy for productivity, I adapt equation 20 by interacting the variables
of interest with indicators IA = 1 (AFQT > m) and IB = 1 (AFQT ≤ m) for whether a
worker’s AFQT score is above or below the median, m.

lnw = ∑
j∈{A,B}

{
ρ0,jAFQT + ρ1,jAFQT× Experience (82)

+ γ0,jEducation + γ1,jEducation× Experience

+ λ0,j + λ1,jExper. + λ2Exper.2 + λ3Exper.3
}
× Ij +X ′β + ε

I estimate equations 20 and 82 using NLSY79 data (Bureau of Labor Statistics 2016).
The sample follows Arcidiacono et al. (2010).9 It restricts to black and white men who

are employed, have wages between one and one hundred dollars, and at least eight years
of education. Following Altonji and Pierret (2001), I also limit the analysis to workers with
fewer than 13 years of experience – measured as the number of years a worker has spent
outside of school.10 Employment in the military, at home, or without pay is excluded.

Table 1 shows the results. The dependent variable is the log of each worker’s real
hourly wage, multiplied by 100; and AFQT scores are standardized to have mean zero
and unit standard deviation for each age at which the test was taken. The coefficient on
AFQT is therefore approximately the percentage wage gain associated with a one standard
deviation higher AFQT score. The coefficient on the interaction of AFQT with experience
is the number of percentage points that this gain increases by with each year of experience.

Below the median, there is strong evidence of learning. The weight on AFQT rises
steeply with experience, and the weight on education falls. There is less evidence of
learning above the median, where the coefficient on the interaction between AFQT and
experience is close to zero. The large direct effect of AFQT in the upper half of the distri-
bution suggests that the results are not driven by AFQT scores being unimportant at the
high end; and the less negative interaction between education and experience above the
median suggests that differences in learning are driving the results.

9Appendix Table I1 provides summary statistics for workers with high and low AFQT scores.
10The relationship between log wages, AFQT and experience is approximately linear in this region.
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TABLE H1: HETEROGENEITY IN EMPLOYER LEARNING

12 or 16 Years Education Full Sample
Whole sample
AFQT 2.63 2.90

(1.49) (1.32)
AFQT × Experience 0.94 0.87

(0.19) (0.16)
Education 11.09 8.02

(0.87) (0.64)
Education × Experience −0.30 −0.21

(0.12) (0.08)
Below median AFQT
AFQT 5.14 2.51

(2.56) (2.12)
AFQT × Experience 1.11 1.21

(0.32) (0.27)
Education 10.10 7.21

(1.42) (0.87)
Education × Experience −0.35 −0.25

(0.20) (0.11)
Above median AFQT
AFQT 6.55 5.89

(4.02) (3.51)
AFQT × Experience −0.05 0.49

(0.54) (0.45)
Education 11.33 8.18

(0.95) (0.75)
Education × Experience −0.27 −0.17

(0.13) (0.10)
Observations 15884 15884 25659 25659
Clusters 2553 2553 3673 3673
R2 0.30 0.30 0.30 0.30

Table notes. Dependent variable is the worker’s log hourly wage multiplied by 100. AFQT is a worker’s score
on the armed forces qualification test, standardized by age to have zero mean and unit standard deviation.
Education and experience are measured in years. Standard errors, shown in parentheses, are clustered at
the worker level. All regressions include an indicator for urban vs. rural, race, race×experience, and region
and year fixed effects. Data are from the National Longitudinal Survey of Youth (NLSY79). The sample is
restricted to working black and white men who have wages between one and one hundred dollars, at least
eight years of schooling and fewer than 13 years of experience. NLSY sample weights are used.
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I Simulation of the Model
(For Online Publication)

This appendix provides detailed information on the methods I use to simulate the full
model. The first step is to discretize the signal space into nθ possible values, and categorize
individuals into nq groups, each with a different productivity decision. I then use the noise
and productivity distributions to define an nq × nθ matrix B0, which maps productivity
decisions to distributions of realized signals.

A. EVALUATION OF A SINGLE PERTURBATION

Evaluation of a perturbation proceeds as follows. First, define a perturbation that raises
the tax rate on income between z and z by ∆T ′. This yields a new tax schedule, T1.

T ′1 (z) =

T ′0 (z) + ∆T ′ if z ∈ [z, z)

T ′0 (z) otherwise

Take the existing wage given each θ but apply T1 instead of T0. Re-optimize labor supply
decisions and calculate v (w (θ|π0) |T1) for each θ, yielding a candidate vector of utilities
v
(0)
1 . Using v(0)1 , calculate Eθ (v (θ|π0,T1) |q) and adjust workers’ investment decisions to-

ward their preferred choice. This yields a new distribution of productivity, δ(0)1 (q|π0,T1).
In the discretized space, δ(0)1 (q|π0,T1) implies a new candidate vector of productivity

choices q(1)1 . Use these choices to reconstruct a new candidateB(1)
1 matrix. Then solve for

employers’ rational productivity inferences at each value of θ, yielding a candidate set of
employer beliefs π(1)1 (q) and a hypothesized vector of wages w(1)

1 .

w
(1)
1 =

[
diag

(
B

(1)′
1 × δ(1)1

(
q|π(1)1 ,T1

))]−1
×
[
B

(1)′
1 × diag

(
q
(1)
1

)
× δ(1)1

(
q|π(1)1 ,T1

)]
Recalculate utilities to obtain v(1)1 and adjust workers’ investment decisions again, yield-
ing q(2). Iterate this process until individuals do not want to adjust their investment deci-
sions given the hypothesized employer beliefs: i.e., when π

(k)
1 (q) ≈ δ

(k)
1

(
q|π(k)1 (q) ,T1

)
.

At this point, the process has converged.
Once this inner fixed point has been obtained, compare the new value of expected

utility for each level of costs, weight using the assumed social welfare function, and adopt
the perturbation if and only if it produced an increase in average social welfare.

B. DECOMPOSITION OF A PERTURBATION

The effect of a perturbation on equilibrium social welfare can be decomposed into its three
components: the mechanical effect (ME), the fiscal externality (FE) and the belief external-
ity (BE). To calculate the mechanical effect, hold all decisions (wages, labor supply and
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investment) constant and evaluate the mechanical change in welfare. The belief external-
ity can be calculated by comparing the true gain in expected utility to the gain holding
fixed the wage paid at each level of θ. Finally, the fiscal externality can be evaluated by
subtracting the behavioral effect on tax revenue from all individuals’ incomes.

C. SOLVING FOR THE OPTIMAL TAX SCHEDULE

To solve for the optimal tax schedule, simply consider a series of perturbations as defined
above. Define a size for each perturbation, ∆T . Then divide the income distribution into
nb tax brackets. Loop through the tax brackets and calculate the gain in welfare from a per-
turbation in each direction. Adopt the perturbation that increases welfare, then move to
the next bracket. Repeat until there are no perturbations that increase welfare. Optionally,
reduce the size of each perturbation and repeat.

D. RECOVERY OF FUNDAMENTALS

To back out fundamentals for the simulation described in Section 4, I begin with the Pareto
log-normal approximation of the United States wage distribution provided by Mankiw,
Weinzierl and Yagan (2009). Next, I use this wage distribution, and the posited log-normal
conditional signal distribution, to infer a productivity distribution that produces this wage
schedule.

The specific procedure that I follow is to parameterize a Champernowne distribution
for log wages with density proportional to:

1
1
2 exp (α (z − z0)) + λ+ 1

2 exp (−α (z − z0))

To choose the parameters, I use MATLAB’s fminunc function to solve for the set of pa-
rameters that jointly minimize the Kullback-Leibler divergence between the target wage
distribution fw and the simulated distribution f sim

w .

DKL

(
fw||f sim

w

)
= ∑

w

fw (w) ln
(
fw (w)

f sim
w (w)

)
As Figure 8 shows, this process is effective.

For each wage, I can then calculate utility v (w (θ|π) |T0), given an initial tax system T0,
by solving workers’ labor supply problems for each value of θ. Expected utility for each
level of productivity is then given by:

Eθ (v (θ|π0,T0) |q) = B0︸︷︷︸
nq×nθ

× v0︸︷︷︸
nθ×1
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FIGURE I1: OPTIMAL TAX SCHEDULE FROM ALTERNATIVE STARTING POINTS
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Figure notes. This figure shows the results of simulations as described in Section 4 but starting from different
initial tax schedules. Each line shows the optimal tax schedule found using the iterative procedure described
here. There remain very minor differences, which could be eliminated only at great computational expense.

where v0 is a vector that stacks the utility realized at each value of θ and π0 denotes em-
ployers’ current and correct beliefs about the distribution of productivity. Combined with
individuals’ productivity choices and a value of β, this vector of expected utilities can then
be used to back out an implied cost distribution.

E. OPTIMAL TAX RATES AT HIGHER INCOME LEVELS

The discussion in Section 4 focuses on the impact of the belief externality on optimal
marginal tax rates between $0 and $300,000. At higher levels of income, the externality
becomes less important for social welfare – and the tax adjustment lower – because it pri-
marily affects individuals with low social welfare weight. Figure I2 shows the impact on
the optimal tax schedule at higher levels of income, from $300,000 up to around $4 mil-
lion. Because the extended exercise is very computationally intensive, the size of the tax
brackets is larger for this extended exercise.

F. ALTERNATIVE UTILITY AND WELFARE FUNCTIONS

For the simulation introduced in Section 4, I assumed that workers have quasilinear utility,
and that social welfare is the average of types’ log expected utilities.

U = c− l1+
1
εl

/(
1 + 1

εl

)
− kx W (T ) =

∫
K

ln (EUk) dG (k) (83)
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FIGURE I2: OPTIMAL TAX RATES AT HIGHER INCOME LEVELS

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Annual pre-tax income ($million)

10

20

30

40

M
a
rg

in
a
l 
ta

x
 r

a
te

 (
%

)

Optimal tax schedule

Naive social planner

Figure notes. This figure shows the results of a simulation as described in Section 4 when it is extended to
higher levels of income. The graph starts at $300,000 and extends to around $4 million. The solid red line
shows the optimal tax schedule, while the dashed blue line shows a tax schedule that would be accepted
by a naïve social planner who sets the sum of the mechanical effect and fiscal externality equal to zero. For
computational reasons, the tax function is discretized into $100,000 brackets rather than $20,000 brackets.

An alternative is to assume that agents are risk averse over realized consumption, and
that the social welfare function is linear.

U = ln
(
c− l1+

1
εl

/(
1 + 1

εl

))
− kx W (T ) =

∫
K

EUkdG (k) (84)

Results with this specification are shown in Figure I3. The results are qualitatively similar
to those from the simulation in Section 4. As before, marginal tax rates are generally lower
under the optimal than the naïve tax schedule, and the “U” shape of the tax schedule is
amplified when the belief externality is taken into account.

There are, however, important quantitative differences. First, marginal tax rates are
higher with risk aversion under both the optimal and naïve tax schedules. In part, this is
because risk aversion lowers the elasticity of taxable income to around 0.6. In addition,
the specification with risk aversion implies a larger benefit to redistribution; the reason
for this is that marginal social welfare weights decline more steeply with income, because
the planner seeks to equalize realized rather than expected utilities.

Second, the downward adjustment when the belief externality is taken into account
is shifted toward lower incomes. In part, this is again because marginal social welfare
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FIGURE I3: UTILITARIAN NON-LINEAR TAXATION WITH RISK AVERSION
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Figure notes. This figure shows the results of a simulation as described in Section 4 except that agents are risk
averse and the planner is utilitarian. The solid red line shows the optimal tax schedule, while the dashed
blue line shows a tax schedule that would be accepted by a naïve social planner who sets the sum of the
mechanical effect and fiscal externality equal to zero. The tax function is discretized into $20,000 brackets.

weights decline more sharply with realized income; this implies that a given wage im-
pact from the externality matters more at lower incomes than before, and less at higher
incomes. In addition, the adjustment to marginal tax rates is slightly smaller because the
ratio of the elasticity of productivity to the elasticity of taxable income is lower.

G. ADDING NON-DISCRETIONARY EXPENDITURES

The quantitative exercises throughout the paper focus on redistributive taxation. They
therefore assume that there is no separate non-discretionary expenditure requirement.
Mathematically, the results are changed if the product of any such expenditure enter indi-
vidual utilities directly: in this case, the income tax schedule simply needs to be thought
of as including the entire system of taxes and expenditures. However, the analysis does
change slightly if any such expenditures do not enter individual utilities.

Figure I4 shows the results with a $5,000 per person exogenous revenue requirement.
They are largely unchanged except that marginal tax rates are slightly higher, especially at
the low end. Most importantly, the downward adjustment between the naïve and optimal
tax schedules is similar with and without the revenue requirement.
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FIGURE I4: NON-LINEAR TAXATION WITH NON-DISCRETIONARY EXPENDITURES
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Figure notes. This figure shows the results of a simulation as described in Section 4 except that the govern-
ment is required to set aside $5,000 to cover non-discretionary expenditures that do not add to individual
utilities. The solid red line shows the optimal tax schedule, while the dashed blue line shows a tax sched-
ule that would be accepted by a naïve social planner who sets the sum of the mechanical effect and fiscal
externality equal to zero. The tax function is discretized into $20,000 brackets.

H. INCIDENCE OF THE BELIEF EXTERNALITY

As I highlighted in Sections 3 and 4, the incidence of the belief externality matters for its
effect on welfare. This is because the affected individuals vary in their levels of labor sup-
ply, marginal tax rates, and welfare weights. Figure I5 provides a type of decomposition
to shed further light on how incidence matters. First, in each tax bracket, I calculate the
true impact of the belief externality by following the procedure outlined in part B, above.
The solid red line in Figure I5 shows the results, scaled to be relative to the change in
average productivity in response to that perturbation.

The remaining lines show what the impact of the belief externality on social welfare
would be if we were to abstract from the factors that contribute to the incidence being
important. First, the dotted gray line shows what the impact would be if all individuals
supplied the average amount of labor, faced the average marginal tax rate, and had the
same average welfare weight placed upon them. The dashed blue line takes into account
each affected individual’s true level of labor supply to get variation in the pre-tax income
impact of the externality. Next, the dashed orange line translates the pre-tax income im-
pact into consumption by allowing marginal tax rates to vary. The remaining difference
between the orange and solid red lines is due to variation in welfare weights.
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FIGURE I5: INCIDENCE OF THE BELIEF EXTERNALITY
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Figure notes. This figure provides a more detailed analysis of the importance of incidence for the impact of
the belief externality. The solid red line shows the true impact of the belief externality that arises in response
to a small marginal tax cut in each tax bracket, scaled to be relative to the change in average productivity
in response to that perturbation. The dotted gray line shows what the impact would be if all individuals
supplied the average amount of labor, faced the average marginal tax rate, and had the same average welfare
weight placed upon them. The dashed blue line takes into account each affected individual’s true level of
labor supply, and the dashed orange line allows the marginal tax rate to vary. The remaining difference
between the orange and blue lines is due to variation in welfare weights.

As would be expected based on the equilibrium relationship between productivity
and a worker’s expected wage, the wage impact of the externality rises initially and then
slowly declines as incomes rise. When differences in labor supply are taken into account,
the impact is skewed further toward higher incomes. Differences in marginal tax rates
then accentuate the inverse-U shape of the incidence.11 Finally, declining marginal social
welfare weights reduce the welfare impact at high incomes. On net, we are left with a
strong inverse-U shaped pattern in the impact of the belief externality on welfare.

I. ADDITIONAL FIGURES AND TABLES

Table I1 provides summary statistics for data used to test for employer learning in Section
4. Figures I6 to I8 compare the mechanical effect, fiscal externality and belief externality
between the naïve and optimal tax schedules, in each tax bracket for the simulation in
Section 4. Figure I9 shows the expected net transfer from the government for workers of

11At very low incomes, this adjustment amplifies a negative impact on high income individuals enough so
that the average consumption impact is negative, although the final impact on social welfare is still positive.

63



each initial productivity level. Figure I10 plots the utility gain for workers with at each
initial productivity level. Finally, Figure I11 shows the change in marginal social welfare
weights starting from naïve taxation and transitioning to optimal taxation.

TABLE I1: SUMMARY STATISTICS FOR HIGH AND LOW AFQT WORKERS

Low AFQT High AFQT
Mean Standard Deviation Mean Standard Deviation

AFQT −0.67 (0.67) 1.00 (0.40)
Log(wage) 6.68 (0.46) 7.03 (0.54)
Experience 7.21 (5.99) 8.13 (6.05)
Years since left school 10.55 (6.49) 9.74 (6.29)
Urban (%) 74.4 78.6
Education (%)

– 12 years 59.7 35.7
– 16 years 3.8 25.4
– Other 36.5 38.9

Observations 18921 18903
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table notes. Data are from the National Longitudinal Survey of Youth (NLSY79). The sample is restricted
to working black and white men who have wages between one and one hundred dollars and at least eight
years of schooling. AFQT is a worker’s score on the armed forces qualification test, standardized by age to
have zero mean and unit standard deviation. Experience is measured in years.

FIGURE I6: COMPARISON OF FISCAL EXTERNALITY
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Figure notes. This figure compares the fiscal externality in each tax bracket under naïve and optimal taxation,
in the simulation described in Section 4.
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FIGURE I7: COMPARISON OF BELIEF EXTERNALITY
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Figure notes. This figure compares the belief externality in each tax bracket under naïve and optimal taxation,
in the simulation described in Section 4.

FIGURE I8: COMPARISON OF MECHANICAL EFFECT
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Figure notes. This figure compares the mechanical effect in each tax bracket under naïve and optimal taxa-
tion, in the simulation described in Section 4.
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FIGURE I9: EXPECTED NET TRANSFER
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Figure notes. This figure plots the expected net transfer from the government for workers of each initial
productivity level for the simulation described in Section 4. The solid red line shows the transfer under the
optimal tax schedule, while the dashed blue line shows the transfer under the naïve tax schedule.

FIGURE I10: UTILITY GAIN FROM OPTIMAL TAXATION
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Figure notes. This figure compares the utility levels of agents at each initial productivity level under naïve
and optimal taxation in the simulation described in Section 4.
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FIGURE I11: MARGINAL SOCIAL WELFARE WEIGHTS

20 40 60 80 100 120 140 160 180 200

Initial productivity ($ per hour)

-0.1

0   

0.1 

0.2 

0.3 

C
h
a
n
g
e
 i
n
 s

o
c
ia

l 
w

e
lf
a
re

 w
e
ig

h
t

Optimal compared to naive

Figure notes. This figure plots the change in marginal social welfare weights starting from naïve taxation and
transitioning to optimal taxation, for the simulation described in Section 4.
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