« Back to Results
Manchester Grand Hyatt, Seaport F
Hosted By:
American Finance Association
Mutual Funds: New Perspectives
Paper Session
Friday, Jan. 3, 2020 10:15 AM - 12:15 PM (PDT)
- Chair: Marcin Kacperczyk, Imperial College London
Thousands of Alpha Tests
Abstract
Data snooping is a major concern in empirical asset pricing. By exploiting the “blessings of dimensionality” we develop a new framework to rigorously perform multiple hypothesis testing in linear asset pricing models, while limiting the occurrence of false positive results typically associated with data-snooping. We first develop alpha test statistics that are asymptotically valid, allow for weak dependence in the cross-section, and are robust to the possibility of omitted factors. We then combine them in a multiple-testing procedure that ensures that the rate of false discoveries is ex-ante bounded below a prespecified 5% level. We also show that this method can detect all positive alphas with reasonable strength. Our procedure is designed for high-dimensional settings and works even when the number of tests is large relative to the sample size, as in many finance applications. We illustrate the empirical relevance of our methodology in the context of hedge fund performance (alpha) evaluation. We find that our procedure is able to select – among more than 3,000 available funds – a subset of funds that displays superior in-sample and out-of-sample performance compared to the funds selected by standard methods.The Allocation of Talent across Mutual Fund Strategies
Abstract
We propose a theory of self-selection by mutual fund managers into stock “picking” and market “timing.” With adverse selection, investors learn more easily about the skill of picking funds than of timing funds, since picking investments are less correlated than timing investments. The equilibrium allocation of talent across strategies is such that high-skill managers always pick, while low-skill managers time with positive probability. We empirically confirm the prediction that picking funds outperform timing funds, even though picking does not outperform timing as a strategy. Consistent with the investors’ learning in our model, picking funds exhibit higher flow-performance sensitivity than timing funds, and low-skill managers have the incentive to rely more on timing strategies when their reputation, or aggregate volatility, increase.Discussant(s)
Lu Zheng
,
University of California-Irvine
Rossen Valkanov
,
University of California-San Diego
Stijn Van Nieuwerburgh
,
Columbia University
JEL Classifications
- G1 - General Financial Markets